Vol. 93
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-12
Development of Compact and Flexible Quadrature Hybrid Coupler Using Coaxial Cable with Capacitive Loading for 1.5t Indigenous MRI System
By
Progress In Electromagnetics Research Letters, Vol. 93, 143-151, 2020
Abstract
Quadrature feeding is an essential in magnetic resonance imaging radio frequency (MRI-RF) coils, to improve the homogeneity of the magnetic field of surface coil, the signal to noise ratio (SNR) of the image by a factor of √2 , and to create a circularly polarized magnetic field inside the volume coil. The quadrature feeding is incorporated, using hybrid coupler. However, at 63.87MHz the Larmor frequency of hydrogen proton, corresponding to 1.5 Tesla, the size of the hybrid coupler and other microwave circuits become large. So, to minimize its physical size, a coaxial cable transmission line with lumped capacitive loading has been proposed. The size of the proposed hybrid coupler is reduced by 68%, as compared to the conventional hybrid coupler. The proposed device is then fabricated as a both rigid and flexible structure, which provides isolation (S41) of around 19 dB and a 900phase difference between coupled and the through ports. Both structures provide return loss S11 > -15 dB and coupling at output ports S21, S31 around 3 dB.
Citation
Rohit Apurva, Niraj Yadav, Tapas Bhuiya, and Rajesh Harsh, "Development of Compact and Flexible Quadrature Hybrid Coupler Using Coaxial Cable with Capacitive Loading for 1.5t Indigenous MRI System," Progress In Electromagnetics Research Letters, Vol. 93, 143-151, 2020.
doi:10.2528/PIERL20072706
References

1. Yadav, N. S., I. Kochar, T. K. Bhuiya, and R. Harsh, "RF transmit/receive quadrature fed body birdcage coil for a 1.5 T MR system," 2nd International Conference on Electronics, Material Engineering and Nanotechnology (IEMENTech), 1-7, 2018.

2. Kumar, A. and P. A. Bottomley, "Optimized quadrature surface coil designs," MAGMA, Vol. 21, No. 1–2, 41-52, 2008.
doi:10.1007/s10334-007-0090-2

3. Hoult, D. I., C.-N. Chen, and V. J. Sank, "Quadrature detection in the laboratory frame," Magn. Reson. Med., Vol. 1, 339, 1984.
doi:10.1002/mrm.1910010305

4. Pozar, D. M., Microwave Engineering, 333-336, John Wiley & Sons, 2012.

5. Ugle, N., T. K. Bhuiya, R. Dapkar, D. M. Shinde, and S. Bagchi, "Design and comparison of rectangular, square and hexagonal RF coils for 1.5T MRI system," 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-4, Bangalore, 2018.

6. Myer, D. P., "Radio frequency power amplifiers for NMR and MRI," RF Coils for MRI, Chap. 24, 307, John Wily & Sons, 2012.

7. Sanchez-Soriano, M. A., Y. Quere, V. L. Saux, C. Quendo, and S. Cadiou, "Average power handling capability of microstrip passive circuits considering metal housing and environment conditions," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, 1624-1633, 2014.
doi:10.1109/TCPMT.2014.2345100

8. Crnadak, V. and S. Tasic, "VHF quadrature hybrid coupler," 2015 23rd Telecommunications Forum Telfor (TELFOR), 595-598, Belgrade, 2015.

9. Crnadak, V. and S. Tasic, "Improved VHF quadrature hybrid coupler," 2016 24th Telecommunications Forum (TELFOR), 1-4, Belgrade, 2016.

10. Crnadak, V. and S. Tasic, "VHF quadrature hybrid coupler with the crossed strips," 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 335-338, Nis, 2017.
doi:10.1109/TELSKS.2017.8246292

11. Kulkarni, M., A. N. Cheeran, K. P. Ray, and S. S. Kakatkar, "Novel compact implementation of rat-race hybrid coupler using coaxial cable for VHF applications," 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), 69-71, Tiruchirappalli, India, 2019.

12. Scardelletti, M. C., G. E. Ponchak, and T. M. Weller, "Miniaturized wilkinson power dividers utilizing capacitive loading," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 1, 1531-1309(02)00862-0, Jan. 2002.
doi:10.1109/7260.975717

13. Kakatkar, S. S., P. Irpache, and K. P. Ray, "A compact N-way wilkinson power divider using a novel coaxial cable implementation for VHF band," Progress In Electromagnetic Research Letters, Vol. 62, 49-55, 2016.
doi:10.2528/PIERL16061205

14. Mohamed, E. N., A. G. Sobih, and A. M. El-Tager, "Compact Wilkinson power divider with Inductive loaded microstrip line for harmonics suppression," 2016 IEEE Middle East Conference on Antennas and Propagation (MECAP), 1-4, Dec. 19, 2016.

15. Jung, S.-C., R. Negra, and F. M. Ghannouchi, "A design methodology for miniaturized 3-dB branch line hybrid couplers using distributed capacitors printed in the inner area," IEEE Transaction for Microwave Theory and Techniques, Vol. 56, No. 12, 2950-2953, Dec. 2008.
doi:10.1109/TMTT.2008.2007323

16. Jung, S., R. Negra, and F. M. Ghannouchi, "A miniaturized double-stage 3 dB broadband branch-line hybrid coupler using distributed capacitors," 2009 Asia Pacific Microwave Conference, 1323-1326, Singapore, 2009.

17. Mongia, R. K., I. J. Bahl, P. Bhatia, and J. Hong, RF and Microwave Coupled Line Circuits, 2nd Ed., 225-227, Artech House, 2007.

18. Hirota, T., A. Minakawa, and M. Muraguchi, "Reduced-size branch-line and rat-race hybrids for uniplanar MMIC's," IEEE Transaction for Microwave Theory and Techniques, Vol. 38, 270-275, Mar. 1990.
doi:10.1109/22.45344

19., https://www.pasternack.com/images/ProductPDF/RG187A-U.pdf.

20. Karthik, G. and S. Jayanthu, "Quantification of cable deformation using TDR-experiments," European Journal of Electrical Engineering, Vol. 19, No. 3–4, 209-219, 2017.
doi:10.3166/ejee.19.209-219

21. Dowding, C. H., M. B. Su, and K. O'Connor, "Measurement of rock mass deformation with grouted coaxial antenna cables," Rock Mechanics and Rock Engineering, Vol. 22, No. 1, 1-23, 1989.
doi:10.1007/BF01274117

22. Romheld, M. and W. Hartmann, "Impulse current withstand capability of coaxial cables in high current applications," 2008 IEEE International Power Modulators and High-Voltage Conference, 163-166, Las Vegas, NV, 2008.