Vol. 94
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-26
Low RCS Microstrip Patch Array with Hybrid High Impedance Surface Based Ground Plane
By
Progress In Electromagnetics Research Letters, Vol. 94, 75-84, 2020
Abstract
For a radiating structure such as dipole/patch array mounted on an aerospace platform, the radiation mode radar cross section (RCS) plays a significant role compared to the structural mode RCS. Thus the estimation and control of array RCS without degrading its radiating characteristics poses a challenge for an antenna engineer. In this paper, a novel design of a low profile 4-element patch array with hybrid HIS-based ground plane is presented to demonstrate both in-band and out-of-band structural RCS reductions. A significant broadband reduction in structural RCS has been achieved from 1 GHz to 80 GHz. The radiation mode RCS of the patch array is computed and controlled through optimized design parameters without degrading the radiation characteristics. The computed array RCS shows that even radiation mode RCS can be reduced except in operating frequency range.
Citation
Avinash Singh, and Hema Singh, "Low RCS Microstrip Patch Array with Hybrid High Impedance Surface Based Ground Plane," Progress In Electromagnetics Research Letters, Vol. 94, 75-84, 2020.
doi:10.2528/PIERL20072704
References

1. Jenn, D. C., Radar and Laser Cross Section Engineering, 476, AIAA Education Series, 1995.

2. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

3. Shen, Z., B. Zheng, Z. Mei, J. Yang, and W. Tang, "On the design of wide-band and thin absorbers using the multiple resonances concept," International Conference on Microwave and Millimeter Wave Technology, 32-35, Nanjing, 2008.

4. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber," IET Microwaves, Antennas & Propagation, 850-855, 2016.
doi:10.1049/iet-map.2015.0653

5. Kundu, D., A. Mohan, and A. Chakrabarty, "Single-layer wideband microwave absorber using array of crossed dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1589-1592, 2016.
doi:10.1109/LAWP.2016.2517663

6. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2327-2335, May 2012.
doi:10.1109/TAP.2012.2189701

7. Jia, Y., Y. Liu, H. Wang, K. Li, and S. Gong, "Low-RCS, high-gain, and wideband mushroom antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 277-280, 2015.
doi:10.1109/LAWP.2014.2363071

8. Ramkumar, M. A., C. Sudhendra, and K. Rao, "A novel low RCS microstrip antenna array using thin and wideband radar absorbing structure based on embedded passives resistors," Progress In Electromagnetics Research C, Vol. 68, 153-161, 2016.
doi:10.2528/PIERC16080506

9. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. D. Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, Dec. 2007.
doi:10.1109/TAP.2007.910306

10. Iriarte, J. C., A. T. Pereda, J. L. M. D. Falcon, I. Ederra, R. Gonzalo, and P. D. Maagt, "Broadband radar cross-section reduction using AMC technology," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6136-6143, Dec. 2013.
doi:10.1109/TAP.2013.2282915

11. Singh, H. and R. M. Jha, Active Radar Cross Section Reduction: Theory and Applications, 325, Cambridge University Press, 2015.
doi:10.1017/CBO9781316136171

12. Singh, A., D. K. Sasidharan, and H. Singh, "Estimation and control of total array RCS of microstrip patch array with hybrid HIS-based ground plane," URSI Asia-Pacific Radio Science Conference (AP-RASC 2019), 1, New Delhi, India, Mar. 2019.

13. Singh, A., K. D. Sasidharan, and H. Singh, "Analytical estimation of radiation mode radar cross section (RCS) of phased arrays," IEEE Transactions on Vehicular Technology, Vol. 69, No. 6, 6415-6421, Jun. 2020.
doi:10.1109/TVT.2020.2986007

14. Zhang, J., J. Wang, M. Chen, et al. "RCS reduction of patch array antenna by electromagnetic band-gap structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1048-1051, 2012.
doi:10.1109/LAWP.2012.2215832

15. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electronic Letters, Vol. 52, No. 9, 767-768, Apr. 28, 2016.
doi:10.1049/el.2016.0336

16. Liu, Y., H. Wang, K. Li, and S. Gong, "RCS reduction of a patch array antenna based on microstrip resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 4-7, 2015.
doi:10.1109/LAWP.2014.2354341

17. Liu, Y. and X. Zhao, "Perfect absorber metamaterial for designing low-RCS patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1473-1476, 2014.
doi:10.1109/LAWP.2014.2341299