Vol. 94
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-19
A Compact CPW Bandpass Filter Based on Spiral-Shaped DGSs for 5G Frequency Band
By
Progress In Electromagnetics Research Letters, Vol. 94, 27-34, 2020
Abstract
A CPW (coplanar waveguide) bandpass filter based on spiral-shaped DGSs (defected ground structures) which can be used in the 5G band is proposed. Two pairs of face-to-face symmetrical spiral-shaped DGSs are added to the ground planes of a CPW main transmission line. A cross-shaped notch is adopted in the central strip of the CPW main transmission line to generate the passband, while two m-shaped DGSs are brought in to improve the passband performance of the filter. The measured results show that the central frequency is 3.54 GHz, and the 3-dB bandwidth is from 3.29 GHz to 3.79 GHz. The filter has a 10.1% bandwidth with a return loss better than 10 dB from 3.35 GHz to 3.71 GHz, and the insertion loss is less than 2.0 dB in the passband. Besides, there are two transmission zeros near the passband at 2.45 GHz and 4.81 GHz, which can improve the stopband rejection.
Citation
Wen Huang, Lu Li, Liang Li, and Jinsheng Dong, "A Compact CPW Bandpass Filter Based on Spiral-Shaped DGSs for 5G Frequency Band," Progress In Electromagnetics Research Letters, Vol. 94, 27-34, 2020.
doi:10.2528/PIERL20072403
References

1. Firmansyah, T., S. Praptodinoyo, R. Wiryadinata, et al. "Dual-wideband bandpass filter using folded cross-stub stepped impedance resonator," Microw. Opt. Technol. Lett., Vol. 59, No. 11, 2929-2934, 2017.
doi:10.1002/mop.30848

2. Lin, L., B. Wu, T. Su, et al. "Design of tri-band bandpass filter using novel hexa-mode stub-loaded ring resonator," Microw. Opt. Technol. Lett., Vol. 57, No. 9, 2005-2008, 2015.
doi:10.1002/mop.29252

3. Qin, W., J. Cai, Y. Li, and J. Chen, "Wideband tunable bandpass filter using optimized varactor-loaded SIRs," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 9, 812-814, 2017.
doi:10.1109/LMWC.2017.2734848

4. Gholipour, V., S. M. M. Moshiri, A. Alighanbari, and A. Yahaghi, "Highly selective wideband bandpass filter using combined microstrip/coplanar waveguide structure," Electronics Letters, Vol. 52, No. 13, 1145-1147, 2016.
doi:10.1049/el.2016.0835

5. Xiao, J., M. Zhu, J. Ma, and J. Hong, "Conductor-backed CPW bandpass filters with electromagnetic couplings," IEEE Microw. Wirel. Compon. Lett., Vol. 26, No. 6, 401-403, 2016.
doi:10.1109/LMWC.2016.2562641

6. Yang, B., H. J. Qian, Y. Shu, and X. Luo, "Compact bandpass filter with wide stopband using slow-wave CPW resonator with back-to-back coupled-scheme," IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 13-15, Seoul, South Korea, 2017.

7. Chen, Z., et al., "A high efficiency band-pass filter based on CPW and quasi-spoof surface plasmon polaritons," IEEE Access, Vol. 8, 4311-4317, 2020.
doi:10.1109/ACCESS.2019.2963062

8. Letavin, D. A. and V. A. Chechetkin, "Miniature microwave bandpass filter with two circular spiral resonators," International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2315-2317, Jaipur, 2016.

9. Chang, Y.-C., P.-Y. Wang, S. S. H. Hsu, et al. "A V-band CPW bandpass filter with controllable transmission zeros in integrated passive devices (IPD) technology," IEEE MTT-S International Microwave Symposium, 1-3, San Francisco, CA, 2016.

10. Peng, B., et al., "Compact quad-mode bandpass filter based on quad-mode DGS resonator," IEEE Microw. Wirel. Compon. Lett., Vol. 26, No. 4, 234-236, 2016.
doi:10.1109/LMWC.2016.2537053

11. Ahn, D., J. S. Park, C. S. Kim, et al. "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

12. Xiao, J.-K., X. Qi, H. Wang, and J. Ma, "High selective balanced bandpass filters using endconnected conductor-backed coplanar waveguide," IEEE Access, Vol. 7, 16184-16193, 2019.
doi:10.1109/ACCESS.2019.2893607