Vol. 93
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-09-24
Wideband Triple Resonance Patch Antenna for 5G Wi-Fi Spectrum
By
Progress In Electromagnetics Research Letters, Vol. 93, 89-97, 2020
Abstract
This study presents a triple resonance microstrip slotted antenna element for 5G (5.15-5.875 Wi-Fi band) applications. This antenna constitutes a rectangular patch stimulated with an I-shaped slot and two shorted metallic vias. This arrangement results in an enhancement of the bandwidth. The antenna features a wide impedance bandwidth (IBW) matching due to triple resonances when being properly excited by coax-probe feed. The IBW of the antenna ranges from 5-6 GHz band with three resonances at around 5.2, 5.5, and 5.8 GHz. Finally, the antenna is fabricated and measured, which displays a -10 dB IBW of 5.04-6.05 GHz (18.2%) featuring stable radiation and gain (around 7 dBi). Moreover, the measurements are in good agreement with simulations. On the account of the single-layered dielectric, this antenna can be easily mounted with active electronics.
Citation
Arvind Kumar, Ayman Abdulhadi Althuwayb, and Mu'ath Al-Hasan, "Wideband Triple Resonance Patch Antenna for 5G Wi-Fi Spectrum," Progress In Electromagnetics Research Letters, Vol. 93, 89-97, 2020.
doi:10.2528/PIERL20071605
References

1. Huynh, T. and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electron. Lett., Vol. 31, No. 16, 1310-1312, Aug. 1995.
doi:10.1049/el:19950950

2. Kumar, A. and M. A. Al-Hasan, "A coplanar-waveguide-fed planar integrated cavity backed slotted antenna array using TE33 mode," International Journal of RF and Microwave Computer-Aided Engineering, e22344, Jun. 30, 2020.

3. Lee, K. F. and K. M. Luk, Microstrip Patch Antennas, Imperial College Press, 2011.

4. Kumar, A. and S. Raghavan, "Planar cavity-backed self-diplexing antenna using two-layered structure," Progress In Electromagnetics Research Letters, Vol. 76, 91-96, 2018.

5. Kumar, A., "Design of self-quadruplexing antenna using substrate-integrated waveguide technique," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2687-2689, Dec. 2019.
doi:10.1002/mop.31952

6. Divya, C., "SIW cavity-backed 24 inclined-slots antenna for ISM band application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 5, e22160, May 2020.

7. Chaturvedi, D. and S. Raghavan, "SRR-loaded metamaterial-inspired electrically-small monopole antenna," Progress In Electromagnetics Research C, Vol. 81, 11-19, 2018.
doi:10.2528/PIERC17101202

8. Kandwal, A. and S. K. Khah, "A novel design of gap-coupled sectoral patch antenna," IEEE Antennas Wirel. Propagat. Lett., Vol. 12, 674-677, 2013.
doi:10.1109/LAWP.2013.2264103

9. Rowe, W. S. T. and B. Waterhouse, "Investigation into the performance of proximity coupled stacked patches," IEEE Trans. Antennas Propagat., Vol. 54, No. 6, 1693-1698, 2006.
doi:10.1109/TAP.2006.875462

10. Sun, W., Y. Li, Z. Zhang, and Z. Feng, "Broadband and low-profile microstrip antenna using strip-slot hybrid structure," IEEE Antennas Wirel. Propagat. Lett., Vol. 16, 3118-3121, 2017.
doi:10.1109/LAWP.2017.2763987

11. Wong, H., K. K. So, and X. Gao, "Bandwidth enhancement of a monopolar patch antenna with V-haped slot for car-to-car and WLAN communications," IEEE Trans. Vehicular Technol., Vol. 65, No. 3, 1130-1136, 2016.
doi:10.1109/TVT.2015.2409886

12. Liu, J., Q. Xue, H. Wong, and H. W. Lai, "Design and analysis of a low-profile and broadband microstrip monopolar patch antenna," IEEE Trans. Antennas Propagat., Vol. 61, No. 1, 11-18, 2013.
doi:10.1109/TAP.2012.2214996

13. Liu, J. and Q. Xue, "Broadband long rectangular patch antenna with high gain and vertical polarization," IEEE Trans. Antennas Propagat., Vol. 61, No. 2, 539-546, Feb. 2013.
doi:10.1109/TAP.2012.2224838

14. Wang, J., Q. Liu, and L. Zhu, "Bandwidth enhancement of a differential-fed equilateral triangular patch antenna via loading of shorting posts," IEEE Trans. Antennas Propagat., Vol. 65, No. 1, 36-43, 2017.
doi:10.1109/TAP.2016.2630660

15. Wu, T. L., Y. M. Pan, P. F. Hu, and S. Y. Zheng, "Design of a low profile and compact omnidirectional filtering patch antenna," IEEE Access, Vol. 5, 1083-1089, 2017.
doi:10.1109/ACCESS.2017.2651143

16. Shi, Y., J. Liu, and Y. Long, "Wideband triple- and quad-resonance substrate integrated waveguide cavity-backed slot antennas with shorting vias," IEEE Trans. Antennas Propagat., Vol. 65, No. 11, 5768-5775, Nov. 1, 2017.
doi:10.1109/TAP.2017.2755118

17. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband aperture coupled grid-slotted patch antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3325-3329, Jul. 2015.
doi:10.1109/TAP.2015.2429741

18. Da Xu, K., H. Xu, Y. Liu, J. Li, and Q. H. Liu, "Microstrip patch antennas with multiple parasitic patches and shorting vias for bandwidth enhancement," IEEE Access, Vol. 6, 11624-11633, 2018.

19. Kumar, A. and S. Raghavan, "Bandwidth enhancement of substrate integrated waveguide cavity-backed bow-tie-complementary-ring-slot antenna using a shorted-via," Defence Science Journal, Vol. 68, No. 2, 197-202, Mar. 13, 2018.
doi:10.14429/dsj.68.11827

20. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

21. Kumar, A., "Wideband circular cavity-backed slot antenna with conical radiation patterns," Microwave and Optical Technology Letters, Vol. 62, No. 6, 2390-2397, Jun. 2020.
doi:10.1002/mop.32316

22. Liu, N. W., L. Zhu, W. W. Choi, and X. Zhang, "A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance," IEEE Trans. Antennas Propagat., Vol. 65, No. 3, 1055-1062, Jan. 24, 2017.
doi:10.1109/TAP.2017.2657486

23. Chaturvedi, D. and S. Raghavan, "Wideband HMSIW-based slotted antenna for wireless fidelity application," IET Microwaves, Antennas & Propagation, Vol. 13, No. 2, 258-262, Jan. 9, 2019.
doi:10.1049/iet-map.2018.5110