Vol. 169
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-11-06
The Multilevel Fast Physical Optics Method for Calculating High Frequency Scattered Fields
By
Progress In Electromagnetics Research, Vol. 169, 1-15, 2020
Abstract
The multilevel fast physical optics (MLFPO) is proposed to accelerate the computation of the fields scattered from electrically large coated scatterers. This method is based on the quadratic patch subdivision and the multilevel technology. First, the quadratic patches are employed rather than the planar patches to discretize the considered scatterer. Hence, the number of the contributing patches is cut dramatically, thus making the workload of the MLFPO method much lower than that of the traditional Gordon's method. Next, the multilevel technology is introduced in this work to avoid calculating the physical optics scattered fields from the considered scatterer directly, so that the proposed algorithm can significantly reduce the computational complexity. Finally, numerical results have demonstrated the accuracy and efficiency of the MLFPO method based on the quadratic patches.
Citation
Zhiyang Xue, Yu Mao Wu, Weng Cho Chew, Ya-Qiu Jin, and Amir Boag, "The Multilevel Fast Physical Optics Method for Calculating High Frequency Scattered Fields," Progress In Electromagnetics Research, Vol. 169, 1-15, 2020.
doi:10.2528/PIER20071203
References

1. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

2. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, 1990.

3. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

4. Jin, Y. Q., Electromagnetic Scattering Modelling for Quantitative Remote Sensing, World Science Press, 2000.

5. Tang, L., J. A. Kong, and B. Shin, Theory of Microwave Remote Sensing, IEEE Press, 1995.

6. Harrington, R. F., Field Computation by Moment Methods, Wiley, 2000.

7. Kulkarni, S., S. Uy, R. Lemdiasov, R. Ludwig, and S. Makarov, "MoM volume integral equation solution for an isolated metal-dielectric resonator with the edge-based basis functions," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1566-1571, Apr. 2005.
doi:10.1109/TAP.2005.844402

8. Xiao, L., X. H. Huang, B. Z.Wang, G. Zheng, and P. Chen, "An efficient hybrid method of iterative MoM-PO and equivalent dipole-moment for scattering from electrically large objects," IEEE Trans. Antennas Propag. Lett., Vol. 16, 1723-1726, 2017.
doi:10.1109/LAWP.2017.2669910

9. Jin, J. M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley-IEEE Press, 2014.

10. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd Ed., Artech House, 2015.

11. Yao, J. J., S. Y. He, Y. H. Zhang, H. C. Yin, C. Wang, and G. Q. Zhu, "Evaluation of scattering from electrically large and complex PEC target coated with uniaxial electric anisotropic medium layer based on asymptotic solution in spectral domain," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2175-2186, Apr. 2014.
doi:10.1109/TAP.2014.2300537

12. Bhalla, R., H. Ling, J. Moore, D. J. Andersh, S. W. Lee, and J. Hughes, "3D scattering center representation of complex targets using the shooting and bouncing ray technique: A review," IEEE Antennas Propag. Mag., Vol. 40, No. 5, 30-39, Oct. 1998.
doi:10.1109/74.735963

13. Domingo, M., F. Rivas, J. Perez, R. P. Torres, and M. F. Catedra, "Computation of the RCS of complex bodies using NURBS surfaces," IEEE Antennas Propag. Mag., Vol. 37, No. 6, 36-47, Dec. 1995.
doi:10.1109/74.482030

14. Elking, D. M., J. M. Roedder, D. D. Car, and S. D. Alspach, "A review of high frequency radar cross section analysis capabilities at McDonnell Douglas Aerospace," IEEE Antennas Propag. Mag., Vol. 37, No. 5, 33-43, Oct. 1995.
doi:10.1109/74.475862

15. Wu, Y., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308

16. Wu, Y. M., L. J. Jiang, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting quadratic surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
doi:10.1109/TAP.2013.2259788

17. Zhang, J., B. Xu, and T. J. Cui, "An alternative treatment of saddle stationary phase points in physical optics for smooth surfaces," IEEE Trans. Antennas Propag., Vol. 62, No. 2, 986-991, Feb. 2014.
doi:10.1109/TAP.2013.2292937

18. Fan, T. T., X. Zhou, and T. J. Cui, "Singularity-free contour-integral representations for physicaloptics near-field backscattering problem," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 805-811, Feb. 2017.
doi:10.1109/TAP.2016.2647581

19. Roudstein, M., Y. Brick, and A. Boag, "Multilevel physical optics algorithm for near-field double-bounce scattering," IEEE Trans. Antennas Propag., Vol. 63, No. 11, 5015-5025, Nov. 2015.
doi:10.1109/TAP.2015.2481491

20. Macdonald, H. M., "The effect produced by an obstacle on a train of electric waves," Phil. Trans. Royal Soc. London, Series A, Math. Phys. Sci., Vol. 212, 299-337, 1913.

21. Hodges, R. E. and Y. Rahmat-Samii, "Evaluation of dielectric physical optics in electromagnetic scattering," Symp. on Antennas and Propag. (IEEE APS1993), 1742-1745, 1993.
doi:10.1109/APS.1993.385538

22. Li, N., W. C. Su, J. Yang, and L. J. Hu, "The bistatic formulae of dielectric objects in physical optics," Symp. on Antennas and Propag. (IEEE APS1993), 1746-1749, 1993.
doi:10.1109/APS.1993.385539

23. Cai, W. F., X. G. Liu, H. P. Guo, H. C. Yin, and P. K. Huang, "A concise expression for PO method on electromagnetic scattering by arbitrary shaped conducting targets with partially coating," Environmental Electromagnetics (IEEE CEEM2003), 469-473, 2003.

24. Li, X., Y. Xie, and R. Yang, "High-frequency method for scattering from coated targets with electrically large size in half space," IET Microw. Antennas Propag., Vol. 3, 181-186, Feb. 2009.
doi:10.1049/iet-map:20070287

25. Liu, Z. L. and C. F. Wang, "Shooting and bouncing ray and physical optics for predicting the EM scattering of coated PEC objects," Antennas and Propag. (IEEE APCAP12), 2012.

26. Mohammadzadeh, H., A. Z. Nezhad, Z. H. Firouzeh, and R. Safian, "Modified physical optics approximation and physical theory of diffraction for RCS calculation of dielectric coated PEC," Symp. on Antennas and Propag. (IEEE APS2013), 1896-1897, 2013.

27. Gordon, W. B., "Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields," IEEE Trans. Antennas Propag., Vol. 23, No. 7, 590-592, Jul. 1975.

28. Gordon, W. B., "Near field calculations with far field formulas," Proc. IEEE Trans. Antennas Propag. Soc., Vol. 2, No. 7, 950-953, Jul. 1996.

29. Ludwig, A. C., "Computation of radiation patterns involving numerical double integration," IEEE Trans. Antennas Propag., Vol. 16, No. 6, 767-769, Nov. 1968.
doi:10.1109/TAP.1968.1139296

30. Catedra, M. F., C. Delgado, S. Luceri, and F. S. de Adana, "Efficient procedure for computing fields created by current modes," Electron. Lett., Vol. 39, 763-764, May 2003.
doi:10.1049/el:20030513

31. Catedra, M. F., C. Delgado, S. Luceri, O. G. Blanco, and F. S. de Adana, "Physical optics analysis of multiple interactions in large scatters using current modes," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 985-994, Mar. 2006.
doi:10.1109/TAP.2006.869893

32. Delgado, C., J. M. Gomez, and M. F. Catedra, "Analytical field calculation involving current modes and quadratic phase expressions," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 233-240, Jan. 2007.
doi:10.1109/TAP.2006.888470

33. Boag, A., "A fast physical optics (FPO) algorithm for high frequency scattering," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 197-204, Jan. 2004.
doi:10.1109/TAP.2003.822426

34. Gendelman, A., Y. Brick, and A. Boag, "Multilevel physical optics algorithm for near field scattering," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4325-4335, Aug. 2014.
doi:10.1109/TAP.2014.2327648

35. Brick, Y. and A. Boag, "Multilevel nonuniform grid algorithm for acceleration of integral equation-based solvers for acoustic scattering," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 57, No. 1, 262-273, Jan. 2010.
doi:10.1109/TUFFC.2010.1404

36. Boag, A., "A fast iterative physical optics (FIPO) algorithm based on nonuniform polar grid interpolation," Microw. Opt. Technol. Lett., Vol. 35, No. 3, 240-244, Nov. 2002.
doi:10.1002/mop.10568

37. Boag, A. and E. Michielssen, "A fast physical optics (FPO) algorithm for double-bounce scattering," IEEE Trans. Antennas Propag., Vol. 52, No. 1, 205-212, Jan. 2004.
doi:10.1109/TAP.2003.822428

38. Song, J. M. and W. C. Chew, "Moment method solution using parameter geometry," IEEE Trans. Antennas Propag., Vol. 3, 2242-2245, Jun. 1994.

39. Li, J., L. J. Jiang, and B. Shanker, "Generalized Debye sources-based EFIE solver on subdivision surfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 10, 5376-5386, Oct. 2017.

40. Bucci, O. M. and G. Franceschetti, "On the spatial bandwidth of scattered fields," IEEE Trans. Antennas Propag., Vol. 35, No. 12, 1445-1455, Dec. 1987.
doi:10.1109/TAP.1987.1144024