Vol. 95
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-19
A Novel Single-Layer Anisotropic Unit for Transmit-Reflect Double Function Array
By
Progress In Electromagnetics Research M, Vol. 95, 155-163, 2020
Abstract
In this paper, a novel single-layer anisotropic unit with both reflection and transmission functions is proposed. The unit is a ring-encircled two mirror-symmetry fan-shaped patches, and is fabricated in one side of an F4B substrate. The unit structure is asymmetry with respect to x- and y-axes, and both transmitted and reflected cross-polarized fields are generated simultaneously when the co-polarized field is incident on the symmetry broken surface. Full 360° phase shift range is achieved by utilizing the cross-polarized field, and the transmitted and reflected coefficient magnitudes are above 0.49 close to the theoretical limit. Using this anisotropic unit, three single-layer transmit-reflect-arrays are designed: (1) Two high-gain beams in (θ1 = 0°, φ1 = 0°) and (θ1 = 180°, φ1 = 0°) directions. The gain is 20.9 dBi, and the 3 dB beam width is 8.9°. (2) Two OAM beams with l = 1 at (θ1 = 45°, φ1 = 0°) and (θ2 = 135°, φ2 = 0°). (3) Four OAM beams with l = 1 at (θ1 = 30°, φ1 = 0°), (θ2 = -30°, φ2 = 180°), (θ3 = 150°, φ3 = 0°) and (θ4 = -150°, φ4 = 180°). The simulated and measured results agree well and validate the design principle. The proposed metasurface has the following advantages: single-layer, transmission and reflection dual-functions, multi-beam, and high gain.
Citation
Hui-Fen Huang, and Shuai-Nan Li, "A Novel Single-Layer Anisotropic Unit for Transmit-Reflect Double Function Array," Progress In Electromagnetics Research M, Vol. 95, 155-163, 2020.
doi:10.2528/PIERM20071105
References

1. Allen, L., M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A, Vol. 45, No. 11, 8185, Jun. 1992.
doi:10.1103/PhysRevA.45.8185

2. Yan, Y., G. Xie, M. P. J. Lavery, et al. "High-capacity millimeter-wave communications with orbital angular momentum multiplexing," Nature Commun., Vol. 5, 4876, 2014.
doi:10.1038/ncomms5876

3. Edfors, O. and A. J. Johansson, "Is orbital angular momentum (OAM) based radio communication an unexploited area?," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 1126-1131, 2012.
doi:10.1109/TAP.2011.2173142

4. Zhao, N., X. Li, G. Li, and J. M. Kahn, "Capacity limits of spatially multiplexed free-space communication," Nature Photon., Vol. 9, 822-826, 2015.
doi:10.1038/nphoton.2015.214

5. Chen, M., K. Dholakia, and M. Mazilu, "Is there an optimal basis to maximise optical information transfer?," Sci. Rep., Vol. 6, Art. No. 22821, 2016.
doi:10.1038/srep22821

6. Gong, Y. H., R. Wang, and Y. K. Deng, "Generation and transmission of OAM-carring vortex beams using circular antenna array," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 2940-2949, Jun. 2017.
doi:10.1109/TAP.2017.2695526

7. Hui, X. N., S. L. Zheng, Y. P. Hu, et al. "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. Lett., Vol. 14, 966-969, 2015.
doi:10.1109/LAWP.2014.2387431

8. Pan, Y., et al., "Generation of orbital angular momentum radio waves based on dielectric resonator antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 385-388, 2017.
doi:10.1109/LAWP.2016.2578958

9. Yan, Y., G. Xie, M. P. J. Lavery, et al. "High-capacity millimeter-wave communications with orbital angular momentum multiplexing," Nature Commun., Vol. 5, 4876, 2014.
doi:10.1038/ncomms5876

10. Thide, B., et al., "Utilization of photon orbital angular momentum in the low-frequency radio domain," Phys. Rev. Lett., Vol. 99, No. 8, Art. No. 087701, Aug. 2007.
doi:10.1103/PhysRevLett.99.087701

11. Zhang, Z., S. Zheng, X. Jin, H. Chi, and X. Zhang, "Generation of plane spiral OAM waves using traveling-wave circular slot antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 8-11, 2017.
doi:10.1109/LAWP.2016.2552227

12. Ren, J. and K. W. Leung, "Generation of microwave orbital angular momentum states using hemispherical dielectric resonator antenna," Appl. Phys. Lett., 2018.

13. Chen, Y., et al., "Half-mode substrate integrated waveguide antenna for generating multiple orbital angular momentum modes," Electronics Lett., Vol. 52, 684-686, 2016.
doi:10.1049/el.2015.4416

14. Chen, Y., S. Zhang, Y. Hui, X. Jin, H. Chi, and X. Zhang, "A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1156-1158, 2016.
doi:10.1109/LAWP.2015.2497243

15. Qin, F., L. Wan, L. Li, et al. "A transmission metasurface for generating OAM beams," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 10, 1793-1796, 2018.
doi:10.1109/LAWP.2018.2867045

16. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 396-400, 2017.
doi:10.1109/TAP.2016.2626722

17. Ma, L., C. Chen, L. Zhou, et al. "Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity," Appl. Phys. Lett., Vol. 114, No. 8, 081603, 2019.
doi:10.1063/1.5081514

18. Yang, F., R. Deng, X. Xu, et al. "Design and experiment of a near-zero-thickness high-gain transmit-reflect-array antenna using anisotropic metasurface," IEEE Trans. Antennas Propag., Vol. 66, No. 6, 2853-2861, 2018.
doi:10.1109/TAP.2018.2820320

19. Yu, S. X., L. Li, G. Shi, et al. "Generating multiple orbital angular momentum vortex beams using metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, 241901, 2016.
doi:10.1063/1.4953786