Vol. 94
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-16
A Multiband Compact Low-Profile Planar Antenna Based on Multiple Resonant Stubs
By
Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020
Abstract
In this letter, a multiband compact low-profile planar antenna based on multiple resonant stubs is proposed and studied. By utilizing two pairs of stubs embedded on a defected ground, the reflection coefficient less than -10 dB can be achieved with broadband characteristic for applications of wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX). Meanwhile, a pair of inserted slots on both sides of a curve slot is applied to the antenna design, which decreases the cross polarization. A multiband antenna is fabricated and measured to verify the design. The antenna is compact with operation frequencies for WLAN (2.45/5.2/5.8 GHz) and WiMAX (2.8/3.8/5.5 GHz) applications. The measured peak gains are 5.5, 4.4, 0.0, and 5.6 dBi at 2.45, 2.8, 3.8, and 5.5 GHz, respectively.
Citation
Jianwei Jing, Jiafei Pang, Hang Lin, Zhenyu Qiu, and Changjun Liu, "A Multiband Compact Low-Profile Planar Antenna Based on Multiple Resonant Stubs," Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020.
doi:10.2528/PIERL20071104
References

1. Kim, J.-W., T.-H. Jung, H.-K. Ryu, J.-M. Woo, C.-S. Eun, and D.-K. Lee, "Compact multiband microstrip antenna using inverted-L- and T-shaped parasitic elements," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1299-1302, 2013.
doi:10.1109/LAWP.2013.2283796

2. Kumar, A., J. K. Deegwal, and M. M. Sharma, "Design of multi-polarised quad-band planar antenna with parasitic multistubs for multiband wireless communication," IET Microwaves, Antennas & Propagation, Vol. 12, No. 5, 718-726, 2018.
doi:10.1049/iet-map.2017.0526

3. Wen, L.-H., S. Gao, Q. Luo, Q. Yang, W. Hu, Y. Yin, X. Ren, and J. Wu, "A compact wideband dual-polarized antenna with enhanced upper out-of-band suppression," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5194-5202, 2019.
doi:10.1109/TAP.2019.2911412

4. Sharma, V., N. Lakwar, N. Kumar, and T. Garg, "Multiband low-cost fractal antenna based on parasitic split ring resonators," IET Microwaves, Antennas & Propagation, Vol. 12, No. 6, 913-919, 2018.
doi:10.1049/iet-map.2017.0623

5. Alieldin, A., Y. Huang, S. J. Boyes, M. Stanley, S. D. Joseph, Q. Hua, and D. Lei, "A triple-band dual-polarized indoor base station antenna for 2G, 3G, 4G and sub-6 GHz 5G applications," IEEE Access, Vol. 6, 49209-49216, 2018.
doi:10.1109/ACCESS.2018.2868414

6. Dhar, S., K. Patra, R. Ghatak, B. Gupta, and D. R. Poddar, "A dielectric resonator-loaded Minkowski fractal-shaped slot loop heptaband antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1521-1529, 2015.
doi:10.1109/TAP.2015.2393869

7. Guo, L., W. Q. Chen, and W. C. Yang, "A novel miniaturized planar ultra-wideband antenna," IEEE Access, Vol. 9, 2769-2773, 2019.
doi:10.1109/ACCESS.2018.2886799

8. Paul, P. M., K. Kandasamy, and M. Sharawi, "SRR loaded slot antenna for multiband applications," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017.

9. Li, W.-M., B. Liu, and H.-Y. Zhao, "Parallel rectangular open slots structure in multiband printed antenna design," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1161-1164, 2015.
doi:10.1109/LAWP.2015.2393632

10. Wu, Y. H. and W. H. Tu, "Compact Penta-band CPW-fed slot antenna," IEEE 2018 International Symposium on Antennas and Propagation, 1-2, 2018.

11. Dkiouak, A., A. Zakriti, and M. El Ouahabi, "Design of a compact dual-band MIMO antenna with high isolation for WLAN and X-band satellite by using orthogonal polarization," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 9, 1254-1267, 2019.
doi:10.1080/09205071.2019.1657504

12. Palandi, N. K., N. Nozhat, and R. Basiri, "Design and fabrication of small and low profile microstrip monopole antenna using CRLH-TL structures," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 13, 1-15, 2019.

13. Pan, C. Y. and C. C. Su, "CPW-fed modified rhombus slot antenna with circularly polarized radiation for UHF RFID fixed reader application," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 4, 559-569, 2020.
doi:10.1080/09205071.2020.1724831

14. Qin, X. and Y. Li, "Compact dual-polarized cross-slot antenna with colocated feeding," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 7139-7143, 2019.
doi:10.1109/TAP.2019.2936758

15. Singh, G., B. K. Kanaujia, V. K. Pandey, D. Gandwar, and S. Kumar, "Design of compact dual-band patch antenna loaded with D-shaped complementary split ring resonator," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 16, 2096-2111, 2019.
doi:10.1080/09205071.2019.1663274

16. Qi, L., S. Gao, Z. Chong, Z. Dawei, T. Chaloun, W. Menzel, V. Ziegler, and M. Sobhy, "Design and analysis of a reflectarray using slot antenna elements for Ka-band SatCom," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1365-1374, 2015.
doi:10.1109/TAP.2015.2401393

17. Yu, C., S. Yang, Y. Chen, and D. Zeng, "Radiation enhancement for a triband microstrip antenna using an AMC reflector characterized with three zero-phases in reflection coefficient," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 14, 1846-1859, 2019.
doi:10.1080/09205071.2019.1645743

18. Bui, L. T. P., N. Anselmi, T. Isernia, P. Rocca, and A. F. Morabito, "On bandwidth maximization of fixed-geometry arrays through convex programming," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 5, 581-600, 2020.
doi:10.1080/09205071.2020.1724832