Vol. 93
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-09-02
Investigation of Frequencies Characteristics of Modified Waveguide Aperture by Wire Media
By
Progress In Electromagnetics Research Letters, Vol. 93, 59-64, 2020
Abstract
The paper is devoted to the investigation of radiation frequencies characteristics of a modified waveguide aperture by wire media (WM). Such construction allows radiating weak electromagnetic (EM) waves --- the frequencies of which are non-corresponding to the resonant ones of the modified radiator. It is possible due to the unusual properties of metamaterials, namely the negative value of permittivity of WM. The simulation studying shows that the changing of value of wires radius and at the same time the value of filling factor impacts on the radiation frequency. Therefore, the increase of filling factor leads to the increase of the resonance frequency. The radiation is narrowband with S11-parameter less than -20 dB. The experimental investigation shows that the decrease of the value of lattice period allows increase of the width of radiation frequency range from 30-40 MHz up to approximately 80 MHz at the level of 0.3 (≈ -10 dB). At the same time, the increase of wires' radius values leads to the increase of the value of resonant frequency. Finally, the experimental study demonstrates that the value of overlap between waveguide port (source of EM waves) and wire media sample negligibly impacts on the resonance frequency values and operational range for D/L = 0...0.3.
Citation
Dmytro Vovchuk, and Mykola Khobzei, "Investigation of Frequencies Characteristics of Modified Waveguide Aperture by Wire Media," Progress In Electromagnetics Research Letters, Vol. 93, 59-64, 2020.
doi:10.2528/PIERL20070107
References

1. Simovski, C. R., P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, "Wire metamaterials: Physics and applications," Advanced Materials, Vol. 24, 4229-4248, 2012.
doi:10.1002/adma.201200931

2. Mirmoosa, M. S., Wire media for enhancement of radiative heat transfer and spontaneous emission, Doctoral Thesis in Aalto University, Espoo, Finland, 2017.

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin wire structures," Journal of Physics: Condensed Matter, Vol. 10, 4785-4788, 1998.
doi:10.1088/0953-8984/10/22/007

4. Simovski, C. R. and P. A. Belov, "Low-frequency spatial dispersion in wire media," Physical Review E, Vol. 70, 046616(1-8), 2004.

5. Belov, P. A., S. A. Tretyakov, and A. J. Viitanen, "Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires," Journal of Electromagnetic Waves and Applications, Vol. 16, 1153-1170, 2002.
doi:10.1163/156939302X00688

6. Belov, P. A., R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silverinha, C. R. Simovski, and S. A. Tretyakov, "Strong spatial dispersion in wire media in the very large wavelength limit," Physical Review B, Vol. 67, 113103(1–4), 2003.
doi:10.1103/PhysRevB.67.113103

7. Yakovlev, A. B., M. G. Silveirinha, G. W. Hanson, and Ch. S. R. Kaipa, "An equivalent ABCD-matrix formalism for non-local wire media with arbitrary terminations," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1786-1798, 2020.
doi:10.1109/TAP.2019.2940370

8. Vovchuk, D., S. Kosulnikov, I. S. Nefedov, S. A. Tretyakov, and C. R. Simovski, "Multi-mode broadband power transfer through a wire medium slab," Progress In Electromagnetics Research, Vol. 154, 171-180, 2015.
doi:10.2528/PIER15111908

9. Kosulnikov, S., Wire media for broadband enhancement of radiation and power transfer, Doctoral Thesis in Aalto University, Espoo, Finland, 2017.

10. Kosulnikov, S. Yu., M. S. Mirmoosa, D. A. Vovchuk, S. A. Tretyakov, S. B. Glybovski, and C. R. Simovski, "Enhancement of radiation with irregular wire media," IEEE Transactions an Antennas and Propagation, Vol. 64, No. 12, 5469-5474, 2016.
doi:10.1109/TAP.2016.2606569

11. Pumipong, D., M. Piyaporn, and W. Rangsan, "Creating a gain enhancement technique for a conical horn antenna by adding a wire medium structure at the aperture," Journal of Electromagnetic Engineering and Science, Vol. 16, No. 2, 134-142, 2016.
doi:10.5515/JKIEES.2016.16.2.134

12. Kampeephat, S., W. Wiboonjaroen, P. Kamphikul, and W. Sarikha, "Increasing the gain of a quarter wave monopole antenna with a vertical wire medium structure," 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 824-827, 2020.
doi:10.1109/ECTI-CON49241.2020.9158253

13. Comite, D., P. Baccarelli, P. Burghignoli, and A. Galli, "Wire-medium loaded planar structures: Modal analysis, near fields, and radiation features," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 4–5, 713-722, 2016.
doi:10.1017/S1759078716000490

14. Kosulnikov, S. Yu., E. A. Yankovskaya, S. I. Maslovski, P. A. Belov, and Yu. S. Kivshar, "Optimal filling factor of nanorod lenses for subwavelength imaging," Physical Review A, Vol. 84, 065801(1–4), 2011.

15. Pozar, D. M., Microwave Engineering, Wiley, 2012.

16. Meng, F., Q. Wu, J. Wu, and L. Li, "Analysis and calculation of effective permittivity for a left-handed metamaterial," Asia-Pacific Microwave Conference Proceedings, 1-4, Suzhou, 2005.

17. Weng, Z.-B., Y.-C. Jiao, G. Zhao, and F.-S. Zhang, "Design and experiment of one dimension and two dimension metamaterial structures for directive emission," Progress In Electromagnetics Research, Vol. 70, 199-209, 2007.
doi:10.2528/PIER07010301

18. Rosa, E. B. and F. W. Grover, Formulas and Tables for the Calculation of Mutual and Self-inductance, US Government Printing Office, 1948.

19. Grover, F. W., Inductance Calculations, USA Dover Publications Inc., 2004.

20. Jackson, J. D., Classical Electrodynamics, Wiley, 1975.