Vol. 97
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-29
Simplified Rectangular Planar Array with Circular Boundary for Side Lobe Suppression
By
Progress In Electromagnetics Research M, Vol. 97, 57-68, 2020
Abstract
The thinning methods were usually used to simplify the array complexity by turning off some of the radiating elements in large planar arrays which lead to unavoidable reduction in the directivity. In this paper, an alternative method is used to simplify the array complexity by partitioning a large array into two contiguous subarrays. The first subarray is in circular planar shape in which its elements are uniformly excited, while the second subarray in which its elements surround the circular subarray, and they have significant impacts on the array radiation features and are chosen to be adaptive. The desired radiation characteristics are then obtained by optimizing only the adaptive elements which are far less than the total number of the original array elements. Since the majority of the elements in the proposed array are uniformly excited, its directivity and taper efficiency are found very close to that of the benchmark solutions. Simulation results verify the effectiveness of the proposed array.
Citation
Jafar Ramadhan Mohammed, "Simplified Rectangular Planar Array with Circular Boundary for Side Lobe Suppression," Progress In Electromagnetics Research M, Vol. 97, 57-68, 2020.
doi:10.2528/PIERM20062906
References

1. Kahrilas, P. J., "HAPDAR — An operational phased array radar," Proc. IEEE, Vol. 56, No. 11, 1967-1975, 1968.
doi:10.1109/PROC.1968.6773

2. Brookner, E., Aspects of Modern Radar, 1st Ed., Artech House, 1988.

3. Raytheon datasheet, Sea-Based X-Band Radar (SBX) for Missile Defence, Raytheon Datasheet [Online], available: www.raytheon.com/capabilities/rtnwcm/groups/rms/documents/content/rtn rms ps sbx datasheet.pdf, accessed 3 June 2020.

4. Eiscat3d science report [Online], , available: http://www.eiscat3d.se/sites/default/files/ EISCAT3D ScienceCase v2.pdf, accessed 3 June 2020.

5. Mailloux, R. J. and E. Cohen, "Statistically thinned arrays with quantized element weights," IEEE Trans. Antennas Propag., Vol. 39, No. 4, 436-447, Apr. 1991.
doi:10.1109/8.81455

6. Keizer, W. P. M. N., "Large planar array thinning using iterative FFT techniques," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3359-3362, Oct. 2009.
doi:10.1109/TAP.2009.2029382

7. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, Jul. 1994.
doi:10.1109/8.299602

8. Sallam, T. and A. M. Attiya, "Low sidelobe cosecant-squared pattern synthesis for large planar array using genetic algorithm," Progress In Electromagnetics Research M, Vol. 93, 23-34, 2020.
doi:10.2528/PIERM20042005

9. Kodgirwar, V. P., S. Deosarkar, and K. Joshi, "Design of adaptive array with E-shape slot radiator for smart antenna system," Progress In Electromagnetics Research M, Vol. 90, 137-146, 2020.
doi:10.2528/PIERM19122901

10. Mohammed, J. R., "Thinning a subset of selected elements for null steering using binary genetic algorithm," Progress In Electromagnetics Research M, Vol. 67, 147-157, 2018.
doi:10.2528/PIERM18021604

11. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969

12. Recioui, A., "Sidelobe level reduction in linear array pattern synthesis using particle swarm optimization," Journal of Optimization Theory and Applications, Vol. 153, No. 2, 497-512, 2012.
doi:10.1007/s10957-011-9953-9

13. Ojaroudi Parchin, N., H. J. Basherlou, Y. I. A. Al-Yasir, and R. A. Abd-Alhameed, "A design of antenna array with improved performance for future smart phones," Progress In Electromagnetics Research C, Vol. 101, 1-12, 2020.

14. Recioui, A., "Concentric ring arrays optimization using the spiral inspired technique," Algerian Journal of Signals and Systems, Vol. 3, No. 1, 10-21, Mar. 2018.

15. Qi, Z., Y. Bai, Q. Wang, X. Zhang, and H. Chen, "Optimal synthesis of reconfigurable sparse arrays via multi-convex programming," IET Radar, Sonar & Navigation, 2020.

16. Lopez, P., J. A. Rodriguez, F. Ares, and E. Moreno, "Low-sidelobe patterns from linear and planar arrays with uniform excitations except for phases of a small number of elements," Electronics Letters, Vol. 37, No. 25, 1495-1497, Dec. 2001.
doi:10.1049/el:20011021

17. Mohammed, J. R., "Design of printed Yagi antenna with additional driven element for WLAN applications," Progress In Electromagnetics Research C, Vol. 37, 67-81, 2013.
doi:10.2528/PIERC12121201

18. Compton, R. T., Adaptive Antennas, Prentice Hall, 1988.

19. Li, Y., L. M. Vicente, K. C. Ho, and Y. H. Leung, "A study of the partially adaptive concentric ring array," Circuits Systems and Signal Processing, Vol. 27, No. 5, 733-748, Oct. 2008.
doi:10.1007/s00034-008-9053-8

20. Sayidmarie, K. H. and J. R. Mohammed, "Performance of a wide angle and wideband nulling method for phased arrays," Progress In Electromagnetics Research M, Vol. 33, 239-249, Oct. 2013.

21. Mohammed, J. R., "Optimal null steering method in uniformly excited equally spaced linear array by optimizing two edge elements," Electronics Letters, Vol. 53, No. 11, May 2017.

22. Mohammed, J. R. and K. H. Sayidmarie, "Sidelobe cancellation for uniformly excited planar array antennas by controlling the side elements," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 987-990, 2014.
doi:10.1109/LAWP.2014.2325025

23. Mohammed, J. R. and K. H. Sayidmarie, "Performance evaluation of the adaptive sidelobe canceller with various auxiliary configurations," AEU International Journal of Electronics and Communications, Vol. 80, 179-185, 2017.
doi:10.1016/j.aeue.2017.06.039

24. Mohammed, J. R., "Element selection for optimized multi-wide nulls in almost uniformly excited arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 629-632, Apr. 2018.
doi:10.1109/LAWP.2018.2807371

25. Castorina, G., L. Di Donato, A. F. Morabito, T. Isernia, and G. Sorbello, "Analysis and design of a concrete embedded antenna for wireless monitoring applications," IEEE Antennas and Propagation Magazine, Vol. 58, No. 6, 76-93, 2016.
doi:10.1109/MAP.2016.2609818