Vol. 96
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-23
Refractive Index Sensor MIM Based Waveguide Coupled with a Slotted Side Resonator
By
Progress In Electromagnetics Research M, Vol. 96, 147-156, 2020
Abstract
In this paper, a plasmonic sensor based on a metal-insulator-metal (MIM) waveguide with a slotted side-coupled elliptical cavity is proposed. The transmission characteristics of the cavity are analyzed theoretically, and the improvements of performance for the elliptical cavity structure compared to a single disk cavity are studied. The influence of structural parameters on the transmission spectra and sensing performances is investigated thoroughly. The achieved sensitivity for the first mode was S = 959 nm/RIU and S = 2380 nm/RIU for the second one. Its corresponding sensing resolution is 1.04 x 10-5RIU for mode 1 and 4.20 x 10-6RIU for mode 2, respectively, and high transmissions are achieved at the two resonant wavelengths of 898.8 nm and 1857.1 nm. The proposed plasmonic sensor is a good candidate for designing novel devices and applications, in the field of chemical and biological sensing, and also in the field of plasmonic filters, switches, etc.
Citation
Salah Eddine Achi, Abdesselam Hocini, Hocine Ben Salah, and Ahlam Harhouz, "Refractive Index Sensor MIM Based Waveguide Coupled with a Slotted Side Resonator," Progress In Electromagnetics Research M, Vol. 96, 147-156, 2020.
doi:10.2528/PIERM20061803
References

1. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.
doi:10.1007/0-387-37825-1

2. Strobbia, P., E. R. Languirand, and B. M. Cullum, "Advances in plasmonic nanostructures for sensing: A review," Optical Engineering, Vol. 54, No. 10, 100902, 2015.
doi:10.1117/1.OE.54.10.100902

3. Aberasturi, D. J., A. B. Serrano-Montes, and L. M. Liz-Marzan, "Modern applications of plasmonic nanoparticles: From energy to health," Advanced Optical Materials, Vol. 3, No. 5, 602-617, May 2015.
doi:10.1002/adom.201500053

4. Zarrabi, F. B. and M. N. Moghadasi, "Investigated the Fano resonance in the nano ring arrangement," Optik, Vol. 138, 80-86, 2017.
doi:10.1016/j.ijleo.2017.03.068

5. Giannini, V., A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, "Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nano emitters," Chem. Rev., Vol. 111, 3888-3912, 2011.
doi:10.1021/cr1002672

6. Pandesh, S., M. Maleki, and F. B. Zarrabi, "The sub-wavelength plasmonic nano-antenna based on cross structure," Optik, Vol. 127, 3770-3774, 2016.
doi:10.1016/j.ijleo.2016.01.045

7. Zarrabi, F. B., M. Naser-Moghadasi, S. Heydari, M. Maleki, and A. S. Arezomand, "Crossslot nano-antenna with graphene coat for bio-sensing application," Optics Commun., Vol. 371, 34-39, 2016.
doi:10.1016/j.optcom.2016.03.048

8. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

9. Tang, B. J., J. C. Wang, X. S. Xia, X. Y. Liang, C. Song, and S. N. Qu, "Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators," Appl. Phys. Express, Vol. 8, No. 3, 032202, 2015.
doi:10.7567/APEX.8.032202

10. Bana, X., X. Pang, X. Li, B. Hu, Y. Guo, and H. Zheng, "A nonlinear plasmonic waveguide based all-optical bidirectional switching," Opt. Commun., Vol. 406, 124-127, 2017.

11. Gramotnev, D. and S. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photonics, Vol. 4, No. 83, 2010.

12. Zayats, A., I. Smolyaninov, and A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, Vol. 408, No. 3–4, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001

13. Barnes, W., W. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Physic Review Letters, Vol. 92, 107401, 2004.
doi:10.1103/PhysRevLett.92.107401

14. Chen, Z., H. Li, B. Li, Z. He, H. Xu, M. Zheng, and M. Zhao, "Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system," Applied Physics Express, Vol. 9, No. 10, 102002, 2016.
doi:10.7567/APEX.9.102002

15. Zhan, G., R. Liang, H. Liang, J. Luo, and R. Zhao, "Asymmetric band-pass plasmonic nanodisk filter with mode inhibition and spectrally splitting capabilities," Optics Express, Vol. 22, No. 8, 9912-9919, 2014.
doi:10.1364/OE.22.009912

..
doi:10.1364/OE.22.009912

16. Yang, C., W. Shen, J. Zhou, X. Fang, D. Zhao, X. Zhang, C. Ji, B. Fang, Y. Zhang, X. Liu, and L. Gu, Adv. Opt. Mater., Vol. 4, 1981, 2016.

17. Shi, L., J. He, C. Tan, Y. Liu, J. Hud, X. Wu, M. Chen, X. Zhang, and S. Zhan, "Plasmonic filter with highly selective wavelength in a fixed dimension based on the loaded rectangular ring cavity," Optics Communications, Vol. 439, 125-128, 2019.
doi:10.1016/j.optcom.2019.01.058

18. Sun, W., Q. He, S. Sun, and L. Zhou, "High-efficiency surface plasmon meta-couplers: Concept and microwave-regime realizations," Light: Science & Applications, Vol. 5, e16003, 2016.
doi:10.1038/lsa.2016.3

19. Huang, Y., C. Min, and G. Veronis, "Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides," Optics Express, Vol. 20, No. 20, 22233-22244, 2012.
doi:10.1364/OE.20.022233

20. Hoessbacher, C., Y. Fedoryshyn, A. Emboras, A. Melikyan, M. Kohl, D. Hillerkuss, C. Hafner, and J. Leuthold, "The plasmonic memristor: A latching optical switch," Optica, Vol. 1, No. 4, 198-202, 2014.
doi:10.1364/OPTICA.1.000198

21. Raza, S. and S. Bozhevolnyi, "Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically induced transparency," Optics Letter, Vol. 40, No. 18, 4253-4256, 2015.
doi:10.1364/OL.40.004253

22. Huang, Y., C. Min, P. Dastmalchi, and G. Veronis, "Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors," Optics Express, Vol. 23, No. 11, 23, 14922-14936, 2015.
doi:10.1364/OE.23.014922

23. Gao, Y., S. Zhan, Q. Liu, and Y. Liu, "Controllable plasmonic sensing based on Fano resonance in a cavity coupled defective MDM waveguide," Journal of Physics D: Applied Physics, Vol. 49, 265109, 2016.
doi:10.1088/0022-3727/49/26/265109

24. Im, H., H. Shao, Y. Park, V. Peterson, C. Castro, R. Weissleder, and H. Lee, "Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor," Nat. Biotechnol., Vol. 32, No. 5, 490, 2014.
doi:10.1038/nbt.2886

25. Yu, S., S. Wang, T. Zhao, and J. Yu, "Tunable plasmonic system based on a slotted side-coupled disk resonator and its multiple applications on chip-scale devices," Optik — International Journal for Light and Electron Optics, Vol. 212, 164748, 2020.
doi:10.1016/j.ijleo.2020.164748

26. Ben Salah, H., A. Hocini, M. N. Temmar, and D. Khedrouche, "Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor," Chinese Journal of Physics, Vol. 61, 86-97, 2019.
doi:10.1016/j.cjph.2019.07.006

27. Zhang, Q., X. Huang, X. Lin, J. Tao, and X. Jin, "A subwavelength coupler-type MIM optical filter," Optics Express, Vol. 17, No. 16, 7549, 2009.
doi:10.1364/OE.17.007549

28. Wen, K., L. Yan, W. Pan, B. Luo, Z. Guo, Y. Guo, and X. Luo, "Electromagnetically induced transparency-like transmission in a compact side-coupled t-shaped resonator," Journal of Lightwave Technology, Vol. 32, No. 9, 1071-1707, 2014.
doi:10.1109/JLT.2014.2310236

29. Yu, S., T. Zhao, J. Yu, and D. Pan, "Tuning multiple fano resonances for on-chip sensors in a plasmonic system," Sensors, Vol. 19, No. 7, 2019.

30. Zhang, Z., J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, "Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator," Sensors, Vol. 18, 116, 2018.
doi:10.3390/s18010116

31. Wang, M., M. Zhang, Y. Wang, R. Zhao, and S. Yan, "Fano resonance in an asymmetric MIM Waveguide structure and its application in a refractive index nanosensor," Sensors, Vol. 19, 791, 2019.
doi:10.3390/s19040791

32. Hocini, A., H. Ben Salah, D. Khedrouche, and N. Melouk, "A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal-insulator-metal structure," Opt. Quant. Electron., Vol. 52, 336, 2020.
doi:10.1007/s11082-020-02446-x

33. Gai, H. F., J. Wang, and Q. Tian, "Modified debye model parameters of metals applicable for broadband calculations," Appl. Opt., Vol. 46, No. 12, 2229-2233, 2007.
doi:10.1364/AO.46.002229

34. Johnson, P. B., "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

35. Zhang, X., M. Shao, and X. Zeng, "High quality plasmonic sensors based on fano resonance created through cascading double asymmetric cavities," Sensors, Vol. 16, 1730, 2016.
doi:10.3390/s16101730

36. Wei, P. K., Y. C. Huang, C. C. chieng, F. G. Tseng, and W. Fann, "Off angle illumination induced surface plasmon coupling in subwavelength metallic slits," Opt. Express, Vol. 13, No. 26, 10784-10794, 2005.
doi:10.1364/OPEX.13.010784

37. Zhang, Q., X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, "A subwave length coupler-type MIM optical flter," Opt. Express, Vol. 17, No. 9, 7549-7555, 2009.
doi:10.1364/OE.17.007549

38. Rsoft Design Group, FullWAVE, Inc., , 200 Executive Blvd., Ossining, NY 10562.

39. Wu, T., Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. He, "The sensing characteristics of plasmonic waveguide with a single defect," Optics Communications, Vol. 323, 44-48, 2014.
doi:10.1016/j.optcom.2014.02.067

40. Zhang, Z. et al., "A plasmonic ellipse resonator possessing hybrid modes for ultracompact chipscale application," Phys. Scr., Vol. 94, 125511, 2019.
doi:10.1088/1402-4896/ab4677

41. Dolatabady, A., et al., "A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonato," Optics Communications, Vol. 300, 265-268, 2013.
doi:10.1016/j.optcom.2013.02.037

42. Ghorbani, S., M. A. Dashti, and M. Jabbari, "Plasmonic nano-sensor based on metal dielectric-metal waveguide with the octagonal cavity ring," Laser Physics, Vol. 28, 066208, 2018.
doi:10.1088/1555-6611/aab463