Vol. 94
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-10-20
A Novel Frequency Selective Surface with Two Non-Interfering Passbands
By
Progress In Electromagnetics Research Letters, Vol. 94, 35-41, 2020
Abstract
A novel dual-band frequency selective surface (FSS) operating at Ku- and Ka- bands is presented in this paper. The proposed FSS is an aperture element constituted by a square loop loaded with four symmetrical umbrella-shaped stubs on the front side of the dielectric substrate. A good angular stability up to 60° angle of incidence for both TE and TM polarizations is provided by the FSS. Moreover, the two passbands of FSS can be controlled independently and flexibly by changing corresponding structural parameters. A prototype of the FSS is fabricated and measured. The good agreement between simulation and measurement results further proves the performance of the FSS.
Citation
Chenglong Wang, and Chunyang Wang, "A Novel Frequency Selective Surface with Two Non-Interfering Passbands," Progress In Electromagnetics Research Letters, Vol. 94, 35-41, 2020.
doi:10.2528/PIERL20061703
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770

2. Afzal, M. U., A. Lalbakhsh, and K. P. Esselle, "Electromagnetic wave beam-scanning antenna using near-field rotatable graded-dielectric plates," J. Appl. Phys., Vol. 124, 912-915, 2018.
doi:10.1063/1.5049204

3. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 912-915, 2017.
doi:10.1109/LAWP.2016.2614498

4. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. L. Smith, "Low-cost non-uniform metallic lattice for rectifying aperture near-field of electromagnetic bandgap resonator antennas," IEEE Trans. Antennas Prppag., Vol. 68, 3328-3335, 2020.
doi:10.1109/TAP.2020.2969888

5. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
doi:10.1126/science.1210713

6. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light Sci. Appl., Vol. 3, e218, 2014.
doi:10.1038/lsa.2014.99

7. High, A. A., R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. Deleon, M. D. Lukin, and H. Park, "Visible-frequency hyperbolic metasurface," Nature, Vol. 522, 192, 2015.
doi:10.1038/nature14477

8. Phan, T., D. Sell, E. W. Wang, S. Doshay, K. Edee, J. Yang, and J. A. Fan, "High-efficiency, large-area, topology-optimized metasurfaces," Light Sci. Appl., Vol. 8, 48, 2019.
doi:10.1038/s41377-019-0159-5

9. Chu, H., Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, and Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials," Light Sci. Appl., Vol. 7, 50, 2018.
doi:10.1038/s41377-018-0052-7

10. Fedotov, V. A., J. Wallauer, M. Walther, M. Perino, N. Papasimakis, and N. I. Zheludev, "Wave vector selective metasurfaces and tunnel vision filters," Light Sci. Appl., Vol. 4, e306, 2015.
doi:10.1038/lsa.2015.79

11. Zabri, S. N., R. Cahill, and A. Schuchinsky, "Compact FSS absorber design using resistively loaded quadruple hexagonal loops for bandwidth enhancement," Electron. Lett., Vol. 51, 162-164, 2015.
doi:10.1049/el.2014.3866

12. Akbari, M., S. Gupta, M. Farahani, A. R. Sebak, and T. A. Denidni, "Gain enhancement of circularly-polarized dielectric resonator antenna based on FSS superstrate for MMW applications," IEEE Trans. Antennas Prppag., Vol. 64, 5542-5546, 2016.
doi:10.1109/TAP.2016.2623655

13. Bouslama, M., M. Traii, T. A. Denidni, and A. Gharsallah, "Beam-switching antenna with a new reconfigurable frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1159-1162, 2016.
doi:10.1109/LAWP.2015.2497357

14. Narayan, S., G. Gulati, B. Sangeetha, and R. U. Nair, "Novel metamaterial element based FSS for airborne radome applications," IEEE Trans. Antennas Prppag., Vol. 66, 4695-4707, 2018.
doi:10.1109/TAP.2018.2851365

15. Wang, H., P. Kong, W. Cheng, W. Bao, X. Yu, L. Miao, and J. Jiang, "Broadband tunability of polarization-insensitive absorber based on frequency selective surface," Sci. Rep., Vol. 6, 23081, 2016.
doi:10.1038/srep23081

16. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Simulation-driven particle swarm optimization of spatial phase shifters," International Conference on Electromagnetics in Advanced Applications, 2016.

17. De Alcantara Neto, M. C., H. R. O. Ferreira, J. P. L. Ara´ujo, F. J. B. Barros, A. G. Neto, M. O. Alencar, and G. P. S. Cavalcan, "Compact ultra-wideband FSS optimised through fast and accurate hybrid bio-inspired multiobjective technique," IET Microwaves, Antennas & Propagation, Vol. 14, 884-890, 2020.
doi:10.1049/iet-map.2019.0821

18. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, and S. Smith, "Design of an artificial magnetic conductor surface using an evolutionary algorithm," Proc. 19th IEEE International Conference on Electromagnetics in Advanced Applications, 2017.

19. Hu, X.-D., X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, "A miniaturized dual-band frequency selective surface (FSS) with closed loop and its complementary pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1374-1377, 2009.
doi:10.1109/LAWP.2009.2039110

20. Zanganeh, E., M. Fallah, A. Abdolali, and N. Komjani, "New approach to design dual-band frequency selective surface based on frequency response tunning of each individual layer," Microw. Opt. Technol. Lett., Vol. 58, 1423-1429, 2016.
doi:10.1002/mop.29837

21. Campos, A. L. P. S., R. H. C. Manicoba, L. M. Araujo, and A. G. D'Assuncao, "Analysis of simple FSS cascading with dual band response," IEEE Trans. Magnetics, Vol. 46, 3345-3348, 2010.
doi:10.1109/TMAG.2010.2046023

22. Salehi, M. and N. Behdad, "A second-order dual X-/Ka-band frequency selective surface," IEEE Microw. Wireless Compon. Lett., Vol. 18, 785-787, 2008.
doi:10.1109/LMWC.2008.2007698

23. Ray, A., M. Kahar, S. Biswas, D. Sarkar, and P. P. Sarkar, "Dual tuned complementary structure frequency selective surface WLAN applications," J. Microw. Optoelectron. Electromagn. Appl., Vol. 11, 144-152, 2012.
doi:10.1590/S2179-10742012000100012

24. Li, M. and N. Behdad, "A third-order bandpass frequency selective surface with a tunable transmission null," IEEE Trans. Antennas Propag., Vol. 60, 2109-2113, 2012.
doi:10.1109/TAP.2012.2186251

25. Romeu, J. and R.-S. Yahya, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Trans. Antennas Propag., Vol. 48, 1097-1105, 2000.
doi:10.1109/8.876329

26. Romeu, J. and Y. Rahmat-Samii, "Dual band FSS with fractal elements," Electron. Lett., Vol. 35, 702-703, 1999.
doi:10.1049/el:19990487

27. da F. Silva, P. H., A. F. dos Santos, R. M. S. Cruz, and A. G. D'Assuncao, "Dual-band bandstop frequency selective surfaces with gosperprefractal elements," Microw. Opt. Technol. Lett., Vol. 54, 771-775, 2012.
doi:10.1002/mop.26663

28. De Lucena Nobrega, C., M. R. da Silva, P. H. da Fonseca Silva, A. G. D'Assuncao, "Analysis and design of frequency selective surfaces using teragon patch elements for WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 11, 1282-1292, 2014.
doi:10.1080/09205071.2014.919240

29. Li, B. and Z. Shen, "Dual-band bandpass frequency selective structures with arbitrary band ratios," IEEE Trans. Antennas Propag., Vol. 62, 5504-5512, 2014.
doi:10.1109/TAP.2014.2349526