Vol. 97
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-16
A Robust Approach for Three-Dimensional Real-Time Target Localization Under Ambiguous Wall Parameters
By
Progress In Electromagnetics Research M, Vol. 97, 145-156, 2020
Abstract
To obtain three-dimensional (3-D) high-precision and real-time through-wall location under ambiguous wall parameters, an approach based on the extreme learning machine (ELM) which is a neural network is proposed. The wall's ambiguity and propagation effects are both included in the hidden layer feedforward network, and then the through-wall location problem is converted to a regression problem. The relationship between the scattered signals and the target properties are determined after the training process. Then the target properties are estimated using the ELM approach. Numerical results demonstrate good performance in terms of effectiveness, generalization, and robustness, especially for the kernel extreme learning machine (KELM) approach. Noiseless and noisy measurements are performed to further demonstrate that the approach can provide good performance in terms of stability and reliability. The location time, including the training time and the test time, is also discussed, and the results show that the KELM approach is very suitable for real-time location problems. Compared to the machine learning approach, the KELM approach is better not only in the aspect of accuracy but also in location time.
Citation
Hua-Mei Zhang, Sheng Zhou, Cheng Xu, and Jiao Jie Zhang, "A Robust Approach for Three-Dimensional Real-Time Target Localization Under Ambiguous Wall Parameters," Progress In Electromagnetics Research M, Vol. 97, 145-156, 2020.
doi:10.2528/PIERM20060701
References

1. Soldovieri, F. and R. Solimene, "Through-wall imaging via a linear inverse scattering algorithm," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 4, 513-517, 2007.
doi:10.1109/LGRS.2007.900735

2. Li, L. L., W. J. Zhang, and F. Li, "A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 423-431, 2010.
doi:10.1109/TGRS.2009.2024686

3. Li, H. Q., G. L. Cui, L. J. Kong, et al. "Robust human targets tracking for MIMO through-wall radar via multi-algorithm fusion," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 12, No. 4, 1154-1164, 2019.
doi:10.1109/JSTARS.2019.2901262

4. Chen, P. H. and R. M. Narayannan, "Shifted pixel method for through-wall radar imaging," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3706-3716, 2012.
doi:10.1109/TAP.2012.2201105

5. Ahmad, F., Y. M. Zhang, and M. G. Amin, "Three-dimensional wideband beamforming for imaging through a single wall," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, 176-179, 2008.
doi:10.1109/LGRS.2008.915742

6. Zhang, W. J., A. Hoorfar, C. Thajudeen, and F. Ahmad, "Full polarimetric beam-forming algorithm for through-the-wall radar imaging," Radio Science, Vol. 46, RS0E16-1-RS0E16-17, 2011.

7. Zhang, W. J., A. Hoorfar, and Q. H. Liu, "Three dimensional imaging of targets behind multi-layered walls," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APSURSI), 1-2, Chicago, 2012.

8. Solimene, R., F. Soldovieri, G. Prisco, and R. Pierri, "Three-dimensional through-wall imaging under ambiguous wall parameters," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1310-1317, 2009.
doi:10.1109/TGRS.2009.2012698

9. Solimene, R., F. Soldovieri, G. Prisco, and R. Pierri, "3D microwave tomography by a 2D slice based reconstruction algorithm," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 4, 556-560, 2007.
doi:10.1109/LGRS.2007.900741

10. Wang, Y. Z. and A. E. Fathy, "Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 5, 1986-2000, 2012.
doi:10.1109/TGRS.2011.2170694

11. Wolf, E., "Three-dimensional structure determination of semi-transparent objects from holography data," Optics Communications, Vol. 1, No. 4, 153-156, 1969.
doi:10.1016/0030-4018(69)90052-2

12. Zhang, W. J. and A. Hoorfar, "Three-dimensional real-time through-the-wall radar imaging with diffraction tomographic algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 7, 4155-4163, 2013.
doi:10.1109/TGRS.2012.2227059

13. Zhang, H. M., Z. B. Wang, Z. H. Wu, F. F. Wang, and Y. R. Zhang, "Real-time through-the-wall radar imaging under unknown wall characteristics using the least-squares support vector machines based method," Journal of Applied Remote Sensing, Vol. 10, No. 2, 020501-1-020501-8, 2016.

14. Huang, G. B., Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: a new learning scheme of feedforward neural networks," IEEE International Joint Conference on Neural Networks, 985-990, 2004.

15. Huang, G. B., Y. Lan, and D. H. Wang, "Extreme learning machines: A survey," International Journal of Machine Learning and Cybernetics, Vol. 2, No. 2, 107-122, 2011.
doi:10.1007/s13042-011-0019-y

16. Huang, G. B., "An insight into extreme learning machines: random neurons, random features and kernels," Cogn Comput, Vol. 6, 376-390, 2014.
doi:10.1007/s12559-014-9255-2