Vol. 94
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-05
CPW-Fed All-Metallic Vivaldi Antennas with Pattern Diversity for Millimeter Wave 5G Access Points
By
Progress In Electromagnetics Research M, Vol. 94, 41-49, 2020
Abstract
A coplanar waveguide (CPW) fed uniplanar all-metallic antenna is proposed for mmWave 5G access points. The antenna has an impedance bandwidth from 26 to 30 GHz with a corresponding end-fire gain of 8 dBi at 28 GHz. The effective radiating volume is 0.0031 λ03 indicating a high gain yield for minimal physical footprint. The radiation efficiency is 99.5%, and the losses are primarily due to finite conductivity of copper. The pattern integrity is high across the band with cross-polarization level below 30 dB, due to lack of electrically thick dielectric substrate. Industry standard low-cost chemical etching technique is used for fabrication of the prototype. A compact, co-polarized stacked beam switching module is also proposed for wide angular coverage with three-ports. This module houses the proposed all-metallic antennas for beam switchability. A customized 3D-printed scaffolding using polylactic acide (PLA) is designed to house the proposed antennas. The antenna module has a wide angular coverage of ±50º. Since the proposed antenna has high radiation efficiency with high gain for minimal physical footprint, it could be a potential solution for mmWave 5G access points. Detailed simulated and measured results are presented.
Citation
Gulur Sadananda Karthikeya, Mahesh Pandurang Abegaonkar, and Shiban Kishen Koul, "CPW-Fed All-Metallic Vivaldi Antennas with Pattern Diversity for Millimeter Wave 5G Access Points," Progress In Electromagnetics Research M, Vol. 94, 41-49, 2020.
doi:10.2528/PIERM20052003
References

1. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

2. Hong, W., K. Baek, Y. Lee, Y. Kim, and S. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Communications Magazine, Vol. 52, No. 9, 63-69, Sep. 2014.
doi:10.1109/MCOM.2014.6894454

3. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2183-2186, 2017.
doi:10.1109/LAWP.2017.2703850

4. Yang, B., Z. Yu, Y. Dong, J. Zhou, and W. Hong, "Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6721-6727, Dec. 2017.
doi:10.1109/TAP.2017.2700891

5. Liu, F., J. Guo, L. Zhao, X. Shen, and Y. Yin, "A meta-surface decoupling method for two linear polarized antenna array in sub-6 GHz base station applications," IEEE Access, Vol. 7, 2759-2768, 2019.
doi:10.1109/ACCESS.2018.2886641

6. Shim, J., J. Go, and J. Chung, "A 1-D tightly coupled dipole array for broadband mmWave communication," IEEE Access, Vol. 7, 8258-8265, 2019.
doi:10.1109/ACCESS.2018.2889333

7. Briqech, Z., A. Sebak, and T. A. Denidni, "Wide-scan MSC-AFTSA array-fed grooved spherical lens antenna for millimeter-wave MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2971-2980, Jul. 2016.
doi:10.1109/TAP.2016.2565704

8. Ikram, M., E. A. Abbas, N. Nguyen-Trong, K. H. Sayidmarie, and A. Abbosh, "Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 12, 7225-7233, Dec. 2019.
doi:10.1109/TAP.2019.2930119

9. Hwang, I., B. Ahn, S. Chae, J. Yu, and W. Lee, "Quasi-Yagi antenna array with modified folded dipole driver for mmWave 5G cellular devices," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 971-975, May 2019.
doi:10.1109/LAWP.2019.2906775

10. Garcia, C. R., R. C. Rumpf, H. H. Tsang, and J. H. Barton, "Effects of extreme surface roughness on 3D printed horn antenna," Electronics Letters, Vol. 49, No. 12, 734-736, Jun. 6, 2013.
doi:10.1049/el.2013.1528

11. Tak, J., D.-G. Kang, and J. Choi, "A lightweight waveguide horn antenna made via 3D printing and conductive spray coating," Microw. Opt. Technol. Lett., Vol. 59, 727-729, 2017.
doi:10.1002/mop.30374

12. Kindt, R. W. and W. R. Pickles, "Ultrawideband all-metal flared-notch array radiator," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 3568-3575, Nov. 2010.
doi:10.1109/TAP.2010.2071360

13. Kedar, A., "Dielectric free wide scan UWB low cross-pol metallic Vivaldi antenna for active phased array radars," IETE Journal of Research, 1-9, May 30, 2019.

14. Sorkherizi, M. S., A. Dadgarpour, and A. A. Kishk, "Planar high-efficiency antenna array using new printed ridge gap waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3772-3776, Jul. 2017.
doi:10.1109/TAP.2017.2700885

15. Alhalabi, R. A. and G. M. Rebeiz, "Differentially-fed millimeter-wave Yagi-Uda antennas with folded dipole feed," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 966-969, Mar. 2010.
doi:10.1109/TAP.2009.2039320

16. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, Sep. 2002.
doi:10.1109/TAP.2002.800699

17. de Maagt, P., R. Gonzalo, Y. C. Vardaxoglou, and J. Baracco, "Electromagnetic bandgap antennas and components for microwave and (Sub)millimeter wave applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2667-2677, Oct. 2003.
doi:10.1109/TAP.2003.817566

18. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.
doi:10.2528/PIER11072710

19. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1741-1746, Apr. 2013.
doi:10.1109/TAP.2012.2237154

20. Lewis, L., M. Fassett, and J. Hunt, "A broadband stripline array element," 1974 Antennas and Propagation Society International Symposium, 335-337, Atlanta, GA, USA, 1974.

21. Reddy, G. S., A. Kamma, S. Kharche, J. Mukherjee, and S. K. Mishra, "Cross-configured directional UWB antennas for multidirectional pattern diversity characteristics," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 853-858, Feb. 2015.
doi:10.1109/TAP.2014.2382687

22. Sharma, Y., D. Sarkar, K. Saurav, and K. V. Srivastava, "Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1163-1166, 2017.
doi:10.1109/LAWP.2016.2626394

23. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "Millimeter wave antenna with wide scan angle radiation characteristics for MIMO applications," Int. J. RF Microw. Comput. Aided Eng., e21564, 2018.

24. Hasan, M. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019.
doi:10.1080/09205071.2019.1617790

25. Fernandez-Martinez, P., S. Martin-Anton, and D. Segovia-Vargas, "Design of a wideband Vivaldi antenna for 5G base stations," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 149-150, Atlanta, GA, USA, 2019.

26. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "One- and two-dimensional beam-switching antenna for millimeter-wave MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 564-573, Feb. 2016.
doi:10.1109/TAP.2015.2508478