Vol. 92
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-07-28
Wideband and Highly-Integrated Dual-Mode LTCC Filter Using Vertically Stacked Double-Ring Resonator
By
Progress In Electromagnetics Research Letters, Vol. 92, 139-145, 2020
Abstract
A wideband dual-mode band-pass filter (BPF) is proposed and implemented using a vertically stacked double-ring resonator (VSDR) and a pair of broadside-coupled input/output (I/O) feeding lines based on a 4-layer low temperature cofired ceramic (LTCC) substrate. The proposed BPF is required to cover the fifth generation (5G) N77/N78/N79 band (3.3-5 GHz), thus achieves a fractional bandwidth (FBW) of 40%. Furthermore, the proposed structure not only possesses a non-orthogonal I/O feeding style for convenient interconnection with neighboring devices, but also removes disturbing element for simpler layout. Comparison and discussion are implemented as well.
Citation
Liangfan Zhu, "Wideband and Highly-Integrated Dual-Mode LTCC Filter Using Vertically Stacked Double-Ring Resonator," Progress In Electromagnetics Research Letters, Vol. 92, 139-145, 2020.
doi:10.2528/PIERL20051502
References

1. Okuyama, Y. S. S. and N. I. T. Takada, "5G radio performance and radio resource management specifications," NTT DOCOMO Technical Journal, Vol. 20, No. 3, 2019.

2. Shin, K. R. and K. Eilert, "Compact low cost 5G NR N78 band pass filter with silicon IPD technology," Proc. 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON), 1-3, 2018.

3. Zhou, B., C. H. Cheng, L. Yan, N. Zhou, Y. Cao, Q. Tang, and Z. Wang, "Wide upper stopband and nonorthogonal I/O feed dual-mode LTCC filter," Proc. 2016 IEEE IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 1-3, 2016.

4. Kuo, M. H., T. Y. Huang, H. Y. Tsai, C. X. Chen, and R. B. Wu, "A miniaturized bandpass filter using double folded dual-mode cavity resonators in LTCC," Proc. 2015 Asia-Pacific Microwave Conference (APMC), Vol. 3, 1-3, 2015.

5. Rodrıguez-Meneses, L. A., C. Gutierrez-Martınez, R. S. Murphy-Arteaga, J. Meza-Perez, and J. A. Torres-Fortiz, "Wideband dual-mode microstrip resonators as IF filters in a K-band wireless transceiver," Microwave and Optical Technology Letters, Vol. 62, 606-614, 2020.
doi:10.1002/mop.32066

6. Chen, C.-H. and K.-H. Lin, "Novel compact chip design of 5 GHz LTCC dual mode 4 poles quasi-elliptic resonator filter," Proc. 2007 Asia-Pacific Microwave Conference, 1-4, 2007.

7. Ahn, K., M. Uhm, and I. Yom, "New circular-shaped dual-mode cavity for mm-wave filters using LTCC technology," Proc. 2007 IEEE Antennas and Propagation Society International Symposium, 2104-2107, 2007.

8. Zhao, F. L., M. H. Weng, C. Y. Tsai, R. Y. Yang, H. Z. Lai, and S. K. Liu, "A miniaturized high selectivity band-pass filter using a dual-mode patch resonator with two pairs of slots," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1145-1151, 2020.
doi:10.1002/mop.32165

9. Ji, X.-B. and M. Yang, "Compact balanced bandpass filter with high selectivity based on two coupled dual-mode microstrip loop resonators," Progress In Electromagnetics Research Letters, Vol. 90, 143-149, 2020.
doi:10.2528/PIERL20011704

10. Rezaee, M. and A. R. Attari, "Analytical synthesis of coupling matrix for a dual mode dual band filter," Microwave and Optical Technology Letters, Vol. 59, No. 1, 80-83, 2017.
doi:10.1002/mop.30229

11. Zhan, Y., J. Chen, and H. Tang, "Miniaturized LTCC bandpass filter using transmission line dual-mode resonator," Proc. 2014 IEEE International Workshop on Electromagnetics (iWEM), 22-23, 2014.
doi:10.1109/iWEM.2014.6963616

12. Chang, K., Microwave Ring Circuits and Antennas, John Wiley & Sons, Inc., 1996.

13. Microwave Office, Applied Wave Research Corporation, , El Segundo, CA.

14. AXIEM, Applied Wave Research Corporation, , El Segundo, CA.