Vol. 94
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-04
Coupling Analysis of Non-Parallel Transmission Lines Excited by Ambient Wave Using a Time Domain Hybrid Method
By
Progress In Electromagnetics Research M, Vol. 94, 9-18, 2020
Abstract
A time domain hybrid method is presented to solve the coupling problem of non-parallel transmission lines (NPTLs) excited by ambient wave efficiently, which consists of transmission line (TL) equations, finite-difference time-domain (FDTD) method, and interpolation techniques. In this method, NPTLs are firstly divided into multiple independent transmission line segments according to the FDTD grids. Then the TL equations are applied to build the coupling models of these TL segments, which rely on the calculation precisions of per unit length (p.u.l) distribution parameters of NPTLs and equivalent sources of TL equations. Thus, the p.u.l parameters of NPTLs are derived from empirical formulas, and the equivalent sources are obtained by some linear interpolation schemes of electric fields on the edges of FDTD grids. Finally, the difference scheme of FDTD is utilized to discretize the TL equations to obtain the voltages and currents on NPTLs and terminal loads. The significant feature of this hybrid method is embodied by its synchronous calculations of space electromagnetic fields and transient responses on NPTLs in time domain. The accuracy of this presented method is testified by the numerical simulations of plane wave coupling to NPTLs on the ground and in the shielded cavity by comparing with FDTD-SPICE method and CST software.
Citation
Zhihong Ye, and Qingyuan Fang, "Coupling Analysis of Non-Parallel Transmission Lines Excited by Ambient Wave Using a Time Domain Hybrid Method," Progress In Electromagnetics Research M, Vol. 94, 9-18, 2020.
doi:10.2528/PIERM20051301
References

1. Azizi, H., F. T. Belkacem, and D. Moussaoui, "Electromagnetic interference from shielding effectiveness of a rectangular enclosure with apertures-circuital approach, FDTD and FIT modeling," Journal of Electromagnetic Waves and Applications, Vol. 28, 494-514, 2014.
doi:10.1080/09205071.2013.875862

2. Chen, Z. and S. Luo, "Generalization of the finite-difference-based time-domain methods using the method of moments," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 9, 2515-2524, 2006.
doi:10.1109/TAP.2006.880733

3. Fu, W. N., Y. Zhao, S. L. Ho, and P. Zhou, "An electromagnetic field and electric circuit coupled method for solid conductors in 3-D finite-element method," IEEE Transactions on Magnetics, Vol. 52, No. 3, 7401704, 2016.
doi:10.1109/TMAG.2015.2487362

4. Baum, C. E., T. K. Liu, and F. M. Tesche, "On the analysis of general multiconductor transmission-line networks," Interaction Notes, 350, 1978.

5. Du, J. K., S. M. Hwang, and J. W. Ahn, "Analysis of coupling effects to PCBs inside waveguide using the modified BLT equation and full-wave analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 10, 3514-3523, 2013.
doi:10.1109/TMTT.2013.2277994

6. Xie, L. and Y. Z. Lei, "Transient response of a multiconductor transmission line with nonlinear terminations excited by an electric dipole," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 3, 805-810, 2009.
doi:10.1109/TEMC.2009.2023327

7. Yan, L. P., X. D. Zhang, and X. Zhao, "A fast and efficient analytical modeling approach for external electromagnetic field coupling to transmission lines in a metallic enclosure," IEEE Access, Vol. 6, 50272-50277, 2018.
doi:10.1109/ACCESS.2018.2867686

8. Nie, B. L., "Analysis of electromagnetic coupling to a shielded line based on extended BLT equation," Proceedings of Photonics & Electromagnetics Research Symposium, 2934-2937, 2019.

9. Tesche, F. M., "On the analysis of a transmission line with nonlinear terminations using the time-dependent BLT equation," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, No. 2, 427-433, 2007.
doi:10.1109/TEMC.2007.897141

10. Paul, C. R., "A SPICE model for multiconductor transmission lines excited by an incident electromagnetic field," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 4, 342-354, 1994.
doi:10.1109/15.328864

11. Erdin, I., A. Dounavis, and R. Achar, "A SPICE model for incident field coupling to lossy multiconductor transmission lines," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 4, 485-494, 2001.
doi:10.1109/15.974627

12. Xie, H., J. Wang, R. Fan, and Y. Liu, "SPICE models for radiated and conducted susceptibility analyses of multiconductor shielded cables," Progress In Electromagnetics Research, Vol. 103, 241-257, 2010.
doi:10.2528/PIER10020506

13. Xie, H. Y., J. G. Wang, and R. Y. Fan, "SPICE models for prediction of disturbances induced by nonuniform fields on shielded cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 1, 185-192, 2011.
doi:10.1109/TEMC.2010.2045895

14. Chen, H. C., Y. P. Du, and M. Q. Yuan, "Lightning-induced voltages on a distribution line with surge arresters using a hybrid FDTD-SPICE method," IEEE Transactions on Power Delivery, Vol. 33, No. 5, 2354-2363, 2018.
doi:10.1109/TPWRD.2017.2788046

15. Ye, Z., X.-Z. Xiong, C. Liao, and Y. Li, "A hybrid method for electromagnetic coupling problems of transmission lines in cavity based on FDTD method and transmission line equation," Progress In Electromagnetics Research M, Vol. 42, 85-93, 2015.
doi:10.2528/PIERM15032605

16. Ye, Z. H., J. J. Zhou, and D. Gou, "Coupling analysis of ambient wave to the shielded cavity with penetrated wire using a time domain hybrid method," Microwave and Optical Technology Letters, Vol. 61, No. 11, 2551-2556, 2019.
doi:10.1002/mop.31918

17. Ye, Z. H., C. Liao, X. Z. Xiong, and M. Zhang, "A hybrid method combining the novel TD-SC technique and FDTD method for the EMI analysis of transmission line network," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 4, 1211-1217, 2017.
doi:10.1109/TEMC.2017.2651884

18. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC: Analysis Methods and Computational Models, John Wiley & Sons, 1997.

19. Duffy, A. P., A. J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S.Woolfson, "Feature Selective Validation (FSV) for validation of Computational Electromagnetics (CEM). Part I - The FSV method," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 3, 449-459, 2006.
doi:10.1109/TEMC.2006.879358

20. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature Selective Validation (FSV) for validation of Computational Electromagnetics (CEM). Part II - Assessment of FSV performance," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 3, 460-467, Aug. 2006.
doi:10.1109/TEMC.2006.879360