Vol. 94
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-05
Wave Scattering by a Perfect Electromagnetic Conductor Wedge Residing Between Isorefractive Media
By
Progress In Electromagnetics Research M, Vol. 94, 31-39, 2020
Abstract
In this study, plane wave diffraction by a perfect electromagnetic wedge which is lying between isorefractive media is investigated. The diffracted waves are constructed by using the relation between initial geometric optics waves and scattered waves at the transition boundaries. The uniform theory of diffraction method is used for derivation of the uniform wave expressions. Thus, obtained uniform expressions are analyzed numerically for different set of parameters.
Citation
Husnu Deniz Basdemir, "Wave Scattering by a Perfect Electromagnetic Conductor Wedge Residing Between Isorefractive Media," Progress In Electromagnetics Research M, Vol. 94, 31-39, 2020.
doi:10.2528/PIERM20050903
References

1. Sommerfeld, A., "Mathematische theorie der diffraction," Math. Ann., Vol. 47, 317, 1896.
doi:10.1007/BF01447273

2. Senior, T. B. A., "Diffraction by a semi-infinite metallic sheet," Proc. R. Soc. Lond. A, Vol. 213, 436-458, 1952.
doi:10.1098/rspa.1952.0137

3. Rawlins, A. D., "The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane," Proc. R. Soc. Lond. A, Vol. 346, 469-484, 1975.
doi:10.1098/rspa.1975.0186

4. Senior, T. B. A., "Diffraction by a resistive half-plane," Electromagnet., Vol. 11, 183-192, 1991.
doi:10.1080/02726349108908272

5. Griesser, T., C. A. Balanis, and K. Liu, "RCS analysis and reduction for lossy dihedral corner reflectors," Proc. IEEE, Vol. 77, 806-814, 1989.
doi:10.1109/5.32071

6. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 1993, 2nd Edition, Scitech Publishing, 2004.

7. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

8. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1853-1860, 2006.
doi:10.1163/156939306779292219

9. Ahmed, S., "Diffraction by a Perfect Electromagnetic Conductor (PEMC) half plane," Int. J. Electron. Lett., Vol. 5, 255-260, 2017.
doi:10.1080/21681724.2016.1180545

10. Lindell, I. V. and A. H. Sihvola, "Transformation method for problems involving Perfect Electromagnetic Conductor (PEMC) structures," IEEE Trans. Antennas Propagat., Vol. 53, 3005-3011, 2005.
doi:10.1109/TAP.2005.854519

11. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering of two or more incident plane wave by a perfect electromagnetic conductor cylinder coated with metamaterial," Progress In Electromagnetics Research B, Vol. 10, 75-90, 2008.
doi:10.2528/PIERB08083101

12. Tiwana, M. H., S. Ahmed, A. B. Mann, and Q. A. Naqvi, "Point source diffraction from a semi-infinite perfect electromagnetic conductor half plane," Optik, Vol. 135, 1-7, 2017.
doi:10.1016/j.ijleo.2017.01.051

13. Nayyeri, V., M. Soleimani, and M. Dehmollaian, "Modeling of the perfect electromagnetic conductor boundary in the finite difference time domain method," Radio Sci., Vol. 48, 453-463, 2013.
doi:10.1002/rds.20051

14. Umul, Y. Z., "Wave diffraction by a perfect electromagnetic conductor wedge," Optik, Vol. 182, 761-765, 2019.
doi:10.1016/j.ijleo.2019.01.114

15. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 3rd Ed., Wiley, 2013.

16. Basdemir, H. D., "Scattering of waves by a perfectly conducting wedge residing at the interface between two isorefractive media," IEEE Antennas Wirel. Propagat. Lett., Vol. 15, 1361-1364, 2016.
doi:10.1109/LAWP.2015.2509098

17. Basdemir, H. D., "Scattering of evanescent plane waves by a black wedge at the interface between isorefractive media," IEEE Trans. Antennas Propagat., Vol. 64, 3661-3664, 2016.
doi:10.1109/TAP.2016.2566098

18. Basdemir, H. D., "Diffraction of waves by a perfect electromagnetic conductor half-plane between isorefractive media," Opt. Quant. Electronics, Vol. 51, No. 222, 1, 2019.

19. Umul, Y. Z., "Wave diffraction by a right-angled interface between resistive half and whole planes," AEU Int. J. Electron. Commun., Vol. 84, 57, 2018.
doi:10.1016/j.aeue.2017.11.015

20. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.
doi:10.1364/JOSA.52.000116

21. Basdemir, H. D., "Directive line source scattering by a half-plane between twoisorefractive media," Optik, Vol. 131, 124-131, 2017.
doi:10.1016/j.ijleo.2016.11.096

22. Jull, E. V., Aperture Antennas and Diffraction Theory, IEE Electromagnetic Wave Series, London, 1981.
doi:10.1049/PBEW010E

23. Morabito, A. F., A. R. Lagana, and T. Isernia, "On the optimal synthesis of ring symmetric shaped patterns by means of uniformly spaced planar arrays," Progress In Electromagnetics Research B, Vol. 20, 33-48, 2010.
doi:10.2528/PIERB10011206