Vol. 95
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-28
Archimedean Spiral Antenna Loaded by Frequency Selective Surface
By
Progress In Electromagnetics Research M, Vol. 95, 199-209, 2020
Abstract
A double-layer frequency selective surface (FSS) with dual rings is used as a reflector in the design of an Archimedean spiral antenna (ASA) with low radar cross section (RCS) and uni-directional characteristics. The proposed FSS presents a stopband in the range of 2 GHz to 4.7 GHz, which is applied to ASA to form a unidirectional radiation pattern with front to back ratio (FBR) values larger than 10 dB in the stopband, and the maximum FBR value is up to 25.26 dB. Compared with the reference antenna with the same-size metallic ground, the proposed FSS reduces the RCS about 2.5-38 dB in the frequency ranges of 4.8-30 GHz. And the FSS antenna also exhibits better axial ratio characteristics in the frequency range of 2.8-8.1 GHz. The composite structure is compact, with a total height of 0.18 wavelength at the lowest analysis frequency of 2 GHz. Measured results indicate that the proposed antenna reproduces the inherent wideband of the original ASA from 1.6 GHz to 8.1 GHz. Meanwhile, the gain of the ASA is increased by 3 dBi. Full-wave simulations and measurements prove that the novel FSS reflector can be employed to replace a metallic ground which realises a uni-directional ASA with broadband low RCS, high gain and good circular polarization (CP) performance.
Citation
Jian-Yi Chu, Lin Peng, Xiao-Feng Li, and Xing Jiang, "Archimedean Spiral Antenna Loaded by Frequency Selective Surface," Progress In Electromagnetics Research M, Vol. 95, 199-209, 2020.
doi:10.2528/PIERM20042002
References

1. Jia, Y. T., Y. Liu, S. X. Gong, W. B. Zhang, and G. S. Liao, "A low-RCS and high-gain circularly polarized antenna with a low profile," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2477-2480, 2017.
doi:10.1109/LAWP.2017.2725380

2. Stutzman, W. L. and G. A. Thiele, Antennas Theory and Design, Wiley, 1981.

3. Nakano, H., S. Sasaki, H. Oyanagi, and J. Yamauchi, "Cavity-backed archimedean spiral antenna with strip absorber," IET Microw. Antennas Propag., Vol. 2, No. 7, 725-730, Oct. 2008.
doi:10.1049/iet-map:20080022

4. Bell, J. and M. Iskander, "A low-profile archimedean spiral antenna using an EBG ground plane," IEEE Antennas Wireless Propag. Lett., Vol. 3, 223-226, 2004.
doi:10.1109/LAWP.2004.835753

5. Amiri, M. A., C. A. Balanis, and C. R. Birtcher, "Gain and bandwidth enhancement of a spiral antenna using a circularly symmetric HIS," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1080-1083, 2017.
doi:10.1109/LAWP.2016.2622222

6. Mohamad, S., R. Cahill, and V. Fusco, "Selective high impedance surface active region loading of Archimedean spiral antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 810-813, 2014.
doi:10.1109/LAWP.2014.2314860

7. Mohamad, S., R. Cahill, and V. Fusco, "Performance of archimedean spiral antenna backed by FSS reflector," Electron. Lett., Vol. 51, No. 1, 14-16, 2015.
doi:10.1049/el.2014.3693

8. Peng, L., J. Y. Xie, K. Sun, X. Jiang, and S. M. Li, "Resonance-based reflector and its application in unidirectional antenna with low-profile and broadband characteristics for wireless applications," Sensors, Vol. 16, No. 12, 2092-1-2092-14, 2016.
doi:10.3390/s16122092

9. Peng, L., J. Y. Xie, X. F. Li, and X. Jiang, "Front to back ratio bandwidth enhancement of resonance based reflector antenna by using a ring-shape director and its time-domain analysis," IEEE Access, Vol. 5, 15318-15325, Jul. 2017.

10. Liu, T., X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, "RCS reduction of waveguide slot antenna with metamaterial absorber," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1479-1484, Mar. 2013.
doi:10.1109/TAP.2012.2231922

11. Zhao, Y., X. Y. Cao, J. Gao, X. Yao, and X. Liu, "A low-RCS and high-gain slot antenna using broadband metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 290-293, 2016.
doi:10.1109/LAWP.2015.2442257

12. Liu, Y., Y. W. Hao, H. Wang, K. Li, and S. X. Gong, "Low RCS microstrip patch antenna using requency-selective surface and microstrip resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1290-1293, 2015.
doi:10.1109/LAWP.2015.2402292

13. Ding, X., Y. F. Cheng, W. Shao, and B. Z. Wang, "Broadband low-RCS phased array with wide-angle scanning performance based on the switchable stacked artificial structure," IEEE Trans. Antennas Propag., Vol. 67, No. 10, 6452-6460, 2019.
doi:10.1109/TAP.2019.2925202

14. Jia, Y. T., Y. Liu, S. X. Gong, W. B. Zhang, and G. S. Liao, "A low-RCS and high-gain circularly polarized antenna with a low profile," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2447-2480, 2017.

15. Liu, Q., C. L. Ruan, L. Peng, and W. X. Wu, "A novel compact archimedean spiral antenna with gap-loading," Progress In Electromagnetics Research Letters, Vol. 3, 169-177, 2008.
doi:10.2528/PIERL08032002

16. Peng, L., K. Sun, J. Y. Xie, Y. J. Qiu, and X. Jiang, "UWB bi-directional bow-tie antenna loaded by rings," Journal of the Korean Physical Society, Vol. 69, No. 1, 22-30, Jul. 2016.
doi:10.3938/jkps.69.22