Vol. 97
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-20
Design of a Long Linear Helical Subarray for High-Power Cylindrical Conformal Array Antenna
By
Progress In Electromagnetics Research M, Vol. 97, 189-200, 2020
Abstract
A Ku-band long linear helical subarray (LLHS) for a high-power cylindrical conformal array antenna has been developed. The LLHS consists of 80 helical antennas can be used to constitute conformal array of cylindrical surface. Through the research on the embedded probe structure, the adjustment of the coupling ability of different types of unit probes and the sealing method of the whole feeding, the problems of large feed reflection, the uneven coupling amount of the unit probe in the rectangular waveguide system are solved, and the LLHS which can be used in the high-power conformal array is realized. The LLHS which is 52.35λ length can obtain 25.2 dB gain, 2.31 dB axis ratio, 90% aperture efficiency, -15.65 dB reflection at 12.5 GHz, and the reflection is lower than -14 dB during 12-13 dB. In addition, it could handle a pulse power of 166 MW under vacuum condition.
Citation
Jianqiong Zhang, Pengyou Huang, Xiang-Qiang Li, and Qingfeng Wang, "Design of a Long Linear Helical Subarray for High-Power Cylindrical Conformal Array Antenna," Progress In Electromagnetics Research M, Vol. 97, 189-200, 2020.
doi:10.2528/PIERM20041302
References

1. Wen, J., D.-B. Chen, D. Wang, and F. Qin, "Preliminary experimental research on Ku-band MILO," IEEE Transactions on Plasma Science, Vol. 41, No. 9, 2501-2505, Sep. 2013.
doi:10.1109/TPS.2013.2276402

2. Nallasamy, V., et al., "Advances and present trends in magnetically insulated line oscillator," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 17, 1864-1874, 2017.
doi:10.1080/09205071.2017.1338622

3. Guo, L., W. Huang, C. Chang, et al. "Studies of a leaky-wave phased array antenna for high-power microwave applications," IEEE Transactions on Plasma Science, Vol. 44, No. 10, 2366-2375, 2016.
doi:10.1109/TPS.2016.2601105

4. Pottier, S. B., F. Hamm, D. Jousse, P. Sirot, F. T. Talom, and R. Vezinet, "High pulsed power compact antenna for high-power microwaves applications," IEEE Transactions on Plasma Science, Vol. 42, No. 6, 1515-1521, Jun. 2014.
doi:10.1109/TPS.2014.2321416

5. Zhang, H. Y., F. S. Zhang, and F. Zhang, "A novel high-gain cavity slot antenna based on polarization twist reflector for high power microwave applications," Progress In Electromagnetics Research C, Vol. 76, 23-31, 2017.

6. Zhao, X. and C. Yuan, "All-metal beam steering lens antenna for high power microwave applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7340-7344, Dec. 2017.

7. Lawrance, J. E. and C. G. Christodoulou, "A high-power microwave zoom antenna with metal-plate lenses," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3380-3389, Aug. 2015.
doi:10.1109/TAP.2015.2435037

8. Li, X. and Q. Liu, "A GW level high power radial helical antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2943-2948, Sept. 2008.
doi:10.1109/TAP.2008.928781

9. Li, X. Q., Q. X. Liu, and J. Q. Zhang, "High power 12-element triangular-grid rectangular radial line helical array antenna," Progress In Electromagnetics Research C, Vol. 55, 17-24, 2014.
doi:10.2528/PIERC14100402

10. Peng, S. and C. Yuan, "Linearly polarised radial line slot antenna for high-power microwave application," IET Microwave Antennas & Propagation, Vol. 11, No. 5, 680-684, Apr. 2017.
doi:10.1049/iet-map.2016.0289

11. Lee, J. M. and J. M. Woo, "Design of array synthesis horn antenna for high power microwave applications," Progress In Electromagnetics Research, 1196-1198, 2012.

12. He, Q. Q. and B. Z. Wang, "Radiation patterns synthesis for a conformal dipole antenna array," Progress In Electromagnetics Research, Vol. 76, 327-340, 2007.
doi:10.2528/PIER07071801

13. Xu, H. and B. Zhang, "Wide solid angle beam-switching conical conformal array antenna with high gain for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2304-2308, Dec. 2018.
doi:10.1109/LAWP.2018.2873703

14. Singh, P. K. and J. Saini, "Reconfigurable microstrip antennas conformal to cylindrical surface," Progress In Electromagnetics Research Letters, Vol. 72, 119-126, 2018.
doi:10.2528/PIERL17111002

15. Braaten, B. D. and S. Roy, "A self-adapting flexible (SELFLEX) antenna array for changing conformal surface applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 655-665, Feb. 2013.
doi:10.1109/TAP.2012.2226227

16. Nechaev, Y. and I. Peshkov, "Evaluation and minimization of Cramer-Rao bound for conformal antenna arrays with directional emitters for DOA-estimation," Progress In Electromagnetics Research C, Vol. 90, 139-154, 2019.
doi:10.2528/PIERC18111802

17. Huang, J. Q., D. Lei, C. Jiang, et al. "Novel circularly polarized SIW cavity-backed antenna with wide CP beamwidth by using dual orthogonal slot split rings," Progress In Electromagnetics Research C, Vol. 73, 97-104, 2017.
doi:10.2528/PIERC17021706

18. Sahnoun, N., I. Messaoudene, T. A. Denidni, et al. "Integrated flexible UWB/NB antenna conformed on a cylindrical surface," Progress In Electromagnetics Research Letters, Vol. 55, 121-128, 2015.
doi:10.2528/PIERL15061809

19. Sam, K. U. and P. Abdulla, "Truncated circular microstrip ultra wideband antenna exhibiting wideband circular polarization," Progress In Electromagnetics Research C, Vol. 99, 111-122, 2020.
doi:10.2528/PIERC19112803

20. Wu, Y. F. and Y. J. Cheng, "Conical conformal shaped-beam substrate integrated waveguide slot array antenna with conical-to-cylindrical transition," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4048-4056, Aug. 2017.
doi:10.1109/TAP.2017.2716404

21. Singh, P. K. and J. Saini, "Effect of varying curvature and inter element spacing on dielectric coated conformal microstrip antenna array," Progress In Electromagnetics Research M, Vol. 58, 11-19, 2017.
doi:10.2528/PIERM17022012

22. Liang, Y. and J. Zhang, "High-power dual-branch helical antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 472-475, Mar. 2018.
doi:10.1109/LAWP.2018.2796244