Vol. 95
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-10
Parameter Design of Invisible Anti-Cloak Based on Nonlinear Transformation
By
Progress In Electromagnetics Research M, Vol. 95, 63-70, 2020
Abstract
In this paper, we propose a new methodology to design an electromagnetic invisibility anti-cloak, which is based on nonlinear coordinate transformation. Cylindrical and elliptical shapes are presented to show the validation of the proposed methodology. We verify and analyze the above model with nonlinear transformation respectively. Full-wave simulations are given to illustrate the ability of the nonlinear transformation, which is advantageous for reducing the design difficulty of the anti-cloak. And the cloak shielding is broken, and the electromagnetic waves can go through the cloak. It is of particular importance in microwave communication applications.
Citation
Zhihua Han, and Yong-Liang Zhang, "Parameter Design of Invisible Anti-Cloak Based on Nonlinear Transformation," Progress In Electromagnetics Research M, Vol. 95, 63-70, 2020.
doi:10.2528/PIERM20041201
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Cummer, S. A., B. I. Popa, D. Schurig, and D. R. Smith, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, No. 3, 036621, 2006.
doi:10.1103/PhysRevE.74.036621

3. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.
doi:10.1126/science.1126493

4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

5. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, No. 21, 9794-9804, 2006.
doi:10.1364/OE.14.009794

6. Milton, G. W., M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys., Vol. 8, No. 10, 248, 2006.
doi:10.1088/1367-2630/8/10/248

7. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, No. 4, 224-227, 2007.
doi:10.1038/nphoton.2007.28

8. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, No. 4, 241105-241109, 2007.
doi:10.1063/1.2748302

9. Jiang, W. X., et al., "Arbitrarily elliptical-cylindrical invisible cloaking," J. Phys. D: Appl. Phys., Vol. 41, No. 5, 199801-199807, 2008.
doi:10.1088/0022-3727/41/19/199801

10. Xuan, Y. L., et al., "Complementary elliptical cloak with arbitrary axial ratio," IEICE Electron. Express, Vol. 16, 20190069-20190075, 2019.
doi:10.1587/elex.16.20190069

11. Jiang, W. X., T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E, Vol. 78, 066667, 2008.

12. Rahm, M., et al., "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations," Photon. Nanostruct., Fundam. Appl., Vol. 6, No. 1, 87-95, 2008.
doi:10.1016/j.photonics.2007.07.013

13. Huo, F. F., L. Li, and Y. J. Li, "Multifunctional electromagnetic concentrator based on complementary media and realized with multilayer metamaterials," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1804-1807, 2014.
doi:10.1109/LAWP.2014.2386866

14. Shi, Y., et al., "Design of a minimized complementary illusion cloak with arbitrary position," Int. J. Antennas Propag., Vol. 2015, 932495-932499, 2015.

15. Shi, Y., et al., "A minimized invisibility complementary cloak with a composite shape," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1800-1805, 2014.
doi:10.1109/LAWP.2014.2363875

16. Kwon, D. H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Opt. Express, Vol. 16, No. 23, 18731-18738, 2006.
doi:10.1364/OE.16.018731

17. Liu, R., et al., "Broadband ground-plane cloak," Science, Vol. 323, 366-371, 2009.
doi:10.1126/science.1166949

18. Luo, Y., et al., "Cylindrical cloak with axial permittivity/permeability spatially invariant," Appl. Phys. Lett., Vol. 93, 033504-033510, 2008.
doi:10.1063/1.2953433

19. Nicolet, A., et al., "Electromagnetic analysis of cylindrical cloak of an arbitrary cross section," Opt. Lett., Vol. 33, 1584-1591, 2008.
doi:10.1364/OL.33.001584

20. Lai, Y., et al., "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, 093901-093907, 2009.
doi:10.1103/PhysRevLett.102.093901

21. Huo, F. F., L. Li, T. Li, Y. M. Zhang, and C. H. Liang, "External invisibility cloak for multiobjects with arbitrary geometries," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 273-276, 2014.

22. Shi, Y., et al., "Three-dimensional complementary invisibility cloak with arbitrary shapes," IEEE Antennas Wireless Propag. Lett., Vol. 14, No. 4, 1550-1556, 2016.

23. Ma, H. F. and T. J. Cui, "Three-dimensional broadband gro-undplane cloak made of metamaterials," Nat. Commun., Vol. 1, No. 5, 21-27, 2010.
doi:10.1038/ncomms1023

24. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, No. 7, 568-571, 2009.
doi:10.1038/nmat2461

25. Chen, H., X. Luo, H. Ma, and C. T. Chan, "The anti-cloak," Opt. Express, Vol. 16, No. 19, 14603-14608, 2008.
doi:10.1364/OE.16.014603

26. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Cloak/Anti-cloak interactions," Opt. Express, Vol. 17, No. 5, 3101-3114, 2009.
doi:10.1364/OE.17.003101

27. Yan, M., Z. Ruan, and M. Qiu, "Scattering characteristics of simplified cylindrical invisibility cloaks," Opt. Express, Vol. 15, No. 26, 17772-17782, 2006.
doi:10.1364/OE.15.017772

28. Li, L., F. F. Huo, Y. M. Zhang, Y. Chen, and C. H. Liang, "Design of invisibility anti-cloak for two-dimensional arbitrary geometries," Opt. Express, Vol. 21, No. 8, 9422-9427, 2013.
doi:10.1364/OE.21.009422

29. Han, T. and Z. Wu, "Electromagnetic wave rotators with homogeneous, nonmagnetic, and isotropic materials," Opt. Lett., Vol. 39, No. 16, 3698-3704, 2014.
doi:10.1364/OL.39.003698

30. Guo, C. J., P. Niu, Q. Xu, and Z. X. Wei, "Parameter design of cylindrical invisible cloak applied nonlinear transformation," International Workshop on Metamaterials, 10428123, 2008.

31. Teixeira, F. L. and W. C. Chew, "General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 6, 223-225, 1998.
doi:10.1109/75.678571

32. "Comsol multiphysics," (Comsol AB), http://www.comsol.com.