Vol. 95
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-08
A Spatial SEM-Based Shallow Neural Network for Electromagnetic Inverse Source Modeling
By
Progress In Electromagnetics Research M, Vol. 95, 53-61, 2020
Abstract
We derive and verify a new type of low-complexity neural networks using the recently introduced spatial singularity expansion method (S-SEM). The neural network consists of a single layer (Shallow Learning approach to machine learning) but with its activation function replaced by specialized S-SEM radiation mode functions derived by electromagnetic theory. The proposed neural network can be trained by measured near- or far-field data, e.g., RCS, probe-measured fields, array manifold samples, in order to reproduce the unknown source current on the radiating structure. We apply the method to wire structures and show that the various spatial resonances of the radiating current can be very efficiently predicted by the S-SEM-based neural network. Convergence results are compared with Genetic Algorithms and are found to be considerably superior in speed and accuracy.
Citation
Abdelelah Alzahed, Said Mikki, and Yahia M. Antar, "A Spatial SEM-Based Shallow Neural Network for Electromagnetic Inverse Source Modeling," Progress In Electromagnetics Research M, Vol. 95, 53-61, 2020.
doi:10.2528/PIERM20040101
References

1. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications, Wiley-IEEE Press, 2017.
doi:10.1002/9781119079699

2. Wang, Y. and X. Chen, "3-D interferometric inverse synthetic aperture radar imaging of ship target with complex motion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 7, 3693-3708, Jul. 2018.
doi:10.1109/TGRS.2018.2806888

3. Mooney, J. E. and L. S. Riggs, "Robust target identification in white gaussian noise for ultra wideband radar systems," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 12, 1817-1823, Dec. 1998.
doi:10.1109/8.743818

4. Bialkowski, K. S., J. Marimuthu, and A. M. Abbosh, "Low-cost microwave biomedical imaging," 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), 697-699, Sept. 2016.
doi:10.1109/ICEAA.2016.7731494

5. Christodoulou, C. and M. Georgiopoulos, Applications of Neural Networks in Electromagnetics, Artech House, 2001.

6. Junior, W. S. S., G. M. Araujo, E. A. B. da Silva, and S. K. Goldenstein, "Facial fiducial points detection using discriminative filtering on principal components," 2010 IEEE International Conference on Image Processing, 2681-2684, Sept. 2010.
doi:10.1109/ICIP.2010.5651849

7. Boerner, W., "Electromagnetic inverse methods and its applications to medical imaging --- A current-state-of-the-art review," IEEE International Symposium on Circuits and Systems, Vol. 2, 999-1006, May 1989.
doi:10.1109/ISCAS.1989.100520

8. Afsari, A. and A. Abbosh, "Fast onsite electromagnetic imaging method for medical applications," 2018 Australian Microwave Symposium (AMS), 83-84, Feb. 2018.
doi:10.1109/AUSMS.2018.8346993

9. Ambrosanio, M., P. Kosmasy, and V. Pascazio, "An adaptive multi-threshold iterative shrinkage algorithm for microwave imaging applications," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-3, Apr. 2016.

10. Alqadah, H. F. and N. Valdivia, "Distributed radar imaging using a spatially enhanced linear sampling method," 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 425-428, Sep. 2013.
doi:10.1109/ICEAA.2013.6632272

11. Mittra, R., W. L. Ko, and P. Harms, "Detection of high conductivity objects buried in sea oor sediments," Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Vol. 3, 1426-1429, Jun. 1994.
doi:10.1109/APS.1994.408232

12. Mikki, S. M., A. M. Alzahed, and Y. M. M. Antar, "The spatial singularity expansion method for electromagnetics," IEEE Access, Vol. 7, 124 576-124 595, Feb. 2019.
doi:10.1109/ACCESS.2019.2897212

13. Mikki, S., A. Hanoon, J. Persano, A. Alzahed, Y. Antar, and J. Aulin, "Theory of electromagnetic intelligent agents with applications to MIMO and DoA systems," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 525-526, Jul. 2017.

14. Schmidhuber, J., "Deep learning in neural networks: An overview," Neural Networks, Vol. 61, 85-117, 2015.
doi:10.1016/j.neunet.2014.09.003

15. Alzahed, A. M., Y. M. M. Antar, and S. M. Mikki, "Electromagnetic deep learning technology for radar target identification," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 579-580, Jul. 2019.

16. Alzahed, A., S. Mikki, and Y. Antar, "Electromagnetic machine learning for inverse modeling using the spatial singularity expansion method," IEEE Journal on Multiscale and Multiphysics Computational Techniques, 1-1, 2020.

17. Mikki, S. M. and Y. M. M. Antar, New foundations for Applied Electromagnetics: The Spatial Structure of Fields, Artech House, 2016.

18. Mikki, S. M. and Y. M. M. Antar, "On the fundamental relationship between the transmitting and receiving modes of general antenna systems: A new approach," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 232-235, 2012.
doi:10.1109/LAWP.2012.2188490

19. Mikki, S. M. and Y. M. M. Antar, "The antenna current Green’s function formalism: Part I," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4493-4504, Sept. 2013.
doi:10.1109/TAP.2013.2266314

20. Mikki, S. M. and Y. M. M. Antar, "The antenna current Green’s function formalism: Part II," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4505-4519, Sept. 2013.
doi:10.1109/TAP.2013.2266315

21. Goodfellow, I., Deep Learning, The MIT Press, 2016.

22. Kolundzija, B. and M. Pavlovic, "Emulating magnetic ferrite tiles properties by wipl-d software suite," 2017 11th European Conference on Antennas and Propagation (EUCAP), 3611-3613, Mar. 2017.
doi:10.23919/EuCAP.2017.7928413

23. Anderson, J. A., An introduction to Neural Networks, MIT Press, 1995.
doi:10.7551/mitpress/3905.001.0001

24. Sapna, S., "Backpropagation learning algorithm based on Levenberg Marquardt algorithm," Computer Science & Information Technology (CS & IT), 393-398, 2012.