Vol. 91
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-05-28
An Analytical Hybrid Model for the Shielding Effectiveness Evaluation of a Dual-Cavity Structure with an Aperture Array
By
Progress In Electromagnetics Research Letters, Vol. 91, 109-116, 2020
Abstract
Rectangular dual-cavity structure is usually used to improve the shielding efficiency of a shielding chamber or to avoid the interference between the internal electronic components of the system. In order to simplify the estimation of the shielding effectiveness for a dual-cavity structure with an aperture array,a hybrid analytical model is proposed based on Robinson's model and Dehkhoda's model. In the new model, the enclosure of cavity and the aperture array are equivalent to a short-circuited waveguide and admittance respectively. Using this hybrid model, shielding effectiveness could be calculated efficiently for a common frequency band. The results of typical examples are compared with simulation examples, and they are in very good agreement. This method provides an analytic solution for designers to speed up the design process of a rectangular dual-cavity structure with an aperture array.
Citation
Hai Jin, Hongliang Zhang, Yurun Ma, Kejian Chen, and Xinfeng Sun, "An Analytical Hybrid Model for the Shielding Effectiveness Evaluation of a Dual-Cavity Structure with an Aperture Array," Progress In Electromagnetics Research Letters, Vol. 91, 109-116, 2020.
doi:10.2528/PIERL20033101
References

1. Araneo, R. and G. Lovat, "Fast MoM analysis of the shielding effectiveness of rectangular enclosures with apertures, metal plates, and conducting objects," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 2, 274-283, 2009.
doi:10.1109/TEMC.2008.2010456

2. Nie, B.-L., P.-A. Du, Y.-T. Yu, and Z. Shi, "Study of the shielding properties of enclosures with apertures at higher frequencies using the transmission-line modeling method," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 1, 73-81, 2010.
doi:10.1109/TEMC.2010.2047398

3. Georgakopoulos, S. V., C. R. Birtcher, and C. A. Balanis, "HIRF penetration through apertures: FDTD versus measurement," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 3, 282-294, 2001.
doi:10.1109/15.942601

4. Tesche, F. M., "Topological concepts for internal EMP interaction," IEEE Transactions on Electromagnetic Compatibility, Vol. 1, 60-64, 1978.
doi:10.1109/TEMC.1978.303693

5. Baum, C. E., T. K. Liu, and F. M. Tesche, "On the analysis of general multiconductor transmission-line networks," Interaction Note, Vol. 350, No. 6, 467-547, 1978.

6. Baum, C. E., "Including apertures and cavities in the BLT formalism," Electromagnetics, Vol. 25, No. 7-8, 623-635, 2005.
doi:10.1080/02726340500214852

7. Kan, Y., L.-P. Yan, X. Zhao, H.-J. Zhou, Q. Liu, and K.-M. Huang, "Electromagnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures," Acta Physica Sinica, Vol. 65, No. 3, 030702, 2016.

8. Nie, B.-L. and P.-A. Du, "Electromagnetic shielding performance of highly resonant enclosures by a combination of the FETD and extended Prony’s method," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 2, 320-327, 2013.
doi:10.1109/TEMC.2013.2279404

9. Kuo, C.-W. and C.-M. Kuo, "Finite-difference time-domain analysis of the shielding effectiveness of metallic enclosures with apertures using a novel subgridding algorithm," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 5, 1595-1601, 2016.
doi:10.1109/TEMC.2016.2572210

10. Basyigit, I. B., H. Dogan, and S. Helhel, "Simulation of metallic enclosures with apertures on Engineering (ELECO),", 1082-1084, IEEE, 2017.

11. Bethe, H. A., "Theory of diffraction by small holes," Physical Review, Vol. 66, No. 7-8, 163, 1944.
doi:10.1103/PhysRev.66.163

12. Robinson, M. P., J. Turner, D.W. Thomas, J. Dawson, M. Ganley, A. Marvin, S. Porter, T. Benson, and C. Christopoulos, "Shielding effectiveness of a rectangular enclosure with a rectangular aperture," Electronics Letters, Vol. 32, No. 17, 1559-1560, 1996.
doi:10.1049/el:19961030

13. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. Ganley, A. Marvin, S. Porter, and D. W. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures ," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 240-248, 1998.
doi:10.1109/15.709422

14. Thomas, D. W., A. C. Denton, T. Konefal, T. Benson, C. Christopoulos, J. Dawson, A. Marvin, S. J. Porter, and P. Sewell, "Model of the electromagnetic fields inside a cuboidal enclosure populated with conducting planes or printed circuit boards," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 2, 161-169, 2001.
doi:10.1109/15.925536

15. Konefal, T., J. Dawson, and A. Marvin, "Improved aperture model for shielding prediction," 2003 IEEE Symposium on Electromagnetic Compatibility, 187-192, Symposium Record (Cat. No. 03CH37446), IEEE, 2003.

16. Dan, S., Y. Shen, and Y. Gao, "3 high-order mode transmission line model of enclosure with off-center aperture," 2007 International Symposium on Electromagnetic Compatibility, 361-364, IEEE, 2007.
doi:10.1109/ELMAGC.2007.4413505

17. Dehkhoda, P., A. Tavakoli, and R.Moini, "An efficient and reliable shielding effectiveness evaluation of a rectangular enclosure with numerous apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 1, 208-212, 2008.
doi:10.1109/TEMC.2007.911922

18. Dehkhoda, P., A. Tavakoli, and R. Moin, "Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
doi:10.2528/PIER08100803

19. Ren, D., P.-A. Du, Y. He, K. Chen, J.-W. Luo, and D. G. Michelson, "A fast calculation approach for the shielding effectiveness of an enclosure with numerous small apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 4, 1033-1041, 2016.
doi:10.1109/TEMC.2016.2547739

20. Lee, J. G., H. J. Eom, B. W. Kim, and H. H. Park, "Shielding effectiveness of enclosure with thick multiple apertures," Microwave and Optical Technology Letters, Vol. 29, No. 3, 178-181, 2001.
doi:10.1002/mop.1121

21. Nie, B.-L., P.-A. Du, and P. Xiao, "An improved circuital method for the prediction of shielding effectiveness of an enclosure with apertures excited by a plane wave," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 5, 1376-1383, 2017.
doi:10.1109/TEMC.2017.2761399

22. Hu, P.-Y. and X. Sun, "Study of the calculation method of shielding effectiveness of rectangle enclosure with an electrically large aperture," Progress In Electromagnetics Research M, Vol. 61, 85-96, 2017.
doi:10.2528/PIERM17081104