Vol. 91
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-08
A Compact Dual-Band and Dual-Polarized Antenna Integrated into Textile for WBAN Dual-Mode Applications
By
Progress In Electromagnetics Research Letters, Vol. 91, 153-161, 2020
Abstract
In the letter, a compact dual-band and dual-polarized antenna integrated into textile for wireless body area network (WBAN) dual-mode applications is proposed. A vertically polarized omnidirectional radiation pattern is generated at 2.45 GHz for on-body mode, while a circularly polarized (CP) broadside radiation pattern resonates at 5.8 GHz for off-body mode. The proposed antenna consists of a compact round rigid substrate and a piece of felt with a full ground. On the upper rigid substrate, a center-fed circular patch with two open annular slots is designed to generate CP radiation. Then four pins are introduced to help the outer ring patch generates an omnidirectional radiation pattern of TM01. The performances of the antenna in free space (FS) and on body (OB) are verified. Besides, the bending characteristics of textile materials are also analyzed. The specific absorption rate (SAR) is simulated, which meets the requirementof the IEEE C95.3 standard. These characteristics make the proposed antenna a good choice for WBAN applications.
Citation
Leitao Zhou, Shao-Jun Fang, and Xiao Jia, "A Compact Dual-Band and Dual-Polarized Antenna Integrated into Textile for WBAN Dual-Mode Applications," Progress In Electromagnetics Research Letters, Vol. 91, 153-161, 2020.
doi:10.2528/PIERL20032901
References

1. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Wireless Communications, Artech House Publishers, Boston, 2006.

2. Conway, G. A. and W. G. Scanlon, "Antennas for over-body-surface communication at 2.45 GHz," IEEE Trans. Antennas and Propag., Vol. 57, No. 4, 844-855, Apr. 2009.
doi:10.1109/TAP.2009.2014525

3. Dumanli, S., "On-body antenna with reconfigurable radiation pattern," 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applicatio, 1-3, London, UK, Dec. 2014.

4. Li, K., L. Li, Y. Cai, C. Zhu, and C. Liang, "A novel design of low-profile dual-band circularly polarized antenna with meta-surface," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1650-1653, 2015.
doi:10.1109/LAWP.2015.2417169

5. Liu, Z. and Y. Guo, "Compact low-profile dual band metamaterial antenna for body centric communications," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 863-866, 2015.
doi:10.1109/LAWP.2014.2382586

6. Masood, R., C. Person, and R. Sauleau, "A dual-mode, dual-port pattern diversity antenna for 2.45-GHz WBAN," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 1064-1067, 2017.
doi:10.1109/LAWP.2016.2620724

7. Tak, J., S. Woo, J. Kwon, and J. Choi, "Dual-band dual-mode patch antenna for on-/off-body WBAN communications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 348-351, 2016.
doi:10.1109/LAWP.2015.2444881

8. Zhao, C. and W. Geyi, "Design of a dual band dual mode antenna for on/off body communications," Microw. Opt. Technol. Lett., Vol. 62, No. 1, 514-520, 2020.
doi:10.1002/mop.32085

9. Tong, X., C. Liu, and X. Liu, "Dual-band on-/off-body reconfigurable antenna for wireless body area network (WBAN) applications," Microw. Opt. Technol. Lett., Vol. 60, No. 4, 945-951, 2018.
doi:10.1002/mop.31088

10. Tong, X., C. Liu, X. Liu, H. Guo, and X. Yang, "Switchable on-/off-body antenna for 2.45 GHz WBAN applications," IEEE Trans. Antennas and Propag., Vol. 66, No. 2, 967-971, Feb. 2018.
doi:10.1109/TAP.2017.2780984

11. Bhattacharjee, S., S. Maity, S. R. B. Chaudhuri, and M. Mitra, "A compact dual-band dual-polarized omnidirectional antenna for on-body applications," IEEE Trans. Antennas and Propag., Vol. 67, No. 8, 5044-5053, Aug. 2019.
doi:10.1109/TAP.2019.2891633

12. Mendes, C. and C. Peixeiro, "A dual-mode single-band wearable microstrip antenna for body area networks," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3055-3058, 2017.
doi:10.1109/LAWP.2017.2760142

13. Simorangkir, R. B., Y. Yang, and L. Matekovits, "Dual-band dualmode textile antenna on PDMS substrate for body-centric communications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 677-680, 2017.
doi:10.1109/LAWP.2016.2598729

14. Yan, S. and G. A. E. Vandenbosch, "Radiation pattern-reconfigurable wearable antenna based on metamaterial structure," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1715-1718, 2016.
doi:10.1109/LAWP.2016.2528299

15. Chen, S. J., T. Kaufmann, D. C. Ranasinghe, and C. Fumeaux, "A modular textile antenna design using snap-on buttons for wearable applications," IEEE Trans. Antennas and Propag., Vol. 64, No. 3, 894-903, Mar. 2016.
doi:10.1109/TAP.2016.2517673

16. Ullah, U., I. B. Mabrouk, and S. Koziel, "A compact circularly polarized antenna with directional pattern for wearable off-body communications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 12, 2523-2527, Dec. 2019.
doi:10.1109/LAWP.2019.2942147

17. Hu, X., S. Yan, and G. A. E. Vandenbosch, "Compact circularly polarized wearable button antenna with broadside pattern for U-NII worldwide band applications," IEEE Trans. Antennas and Propag., Vol. 67, No. 2, 1341-1345, Feb. 2019.
doi:10.1109/TAP.2018.2885210

18. Zheng, K. and Q. Chu, "A novel annular slotted center-fed beidou antenna with a stable phase center," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 3, 364-367, Mar. 2018.
doi:10.1109/LAWP.2017.2778222

19. Hou, Q., H. Tang, Y. Liu, and X. Zhao, "Dual-frequency and broadband circular patch antennas with a monopole-type pattern based on epsilon-negative transmission line," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 442-445, 2012.

20. Al-Zoubi, A., F. Yang, and A. Kishk, "A broadband center-fed circular patch-ring antenna with a monopole like radiation pattern," IEEE Trans. Antennas and Propag., Vol. 57, No. 3, 789-792, Mar. 2009.
doi:10.1109/TAP.2008.2011406

21. Yang, F. and X. X. Zhang, "Slitted small microstrip antenna," Proc. IEEE Antennas Propagation Symp., Vol. 2, 1236-1239, Atlanta, GA, USA, 1998.

22. "IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz to 300 GHz," IEEE Standard C95.3-2002, i-126, 2002.