Vol. 94
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-08
Design of Dual-Beam Reflection Based on 2-Bit Coding Metasurfaces
By
Progress In Electromagnetics Research M, Vol. 94, 61-71, 2020
Abstract
In general, a single beam reflection can be realized by 2-bit coding metasurfaces. In order to obtain multi-beam reflection, a design method for coding sequence based on 2-bit coding metasurfaces is proposed, which can manipulate the direction of reflected beams by 2-bit addition rule and control the number of reflected beams by addition theorem on complex codes. This method simplifies the design process of coding sequence, and the direction and number of multi-beams can be flexibly designed. In this paper, the design of dual-beam reflection is taken as an example to illustrate the design process of coding sequence. Both simulation and measurement results show that the designed metasurface realizes the dual-beam reflection, and the direction of reflected beams is consistent with expectations. The proposed method is of great significance for the design of multi-beam reflection based on coding metasurfaces.
Citation
Honggang Hao, Ting Zhang, Wei Ruan, and Bin Wang, "Design of Dual-Beam Reflection Based on 2-Bit Coding Metasurfaces," Progress In Electromagnetics Research M, Vol. 94, 61-71, 2020.
doi:10.2528/PIERM20032305
References

1. Holloway, C. L., E. F. Kuester, J. A. Gordon, et al. "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

2. Yu, N., P. Genevet, M. A. Kats, et al. "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

3. Li, Z. W., L. R. Huang, K. Lu, et al. "Continuous metasurface for high-performance anomalous reflection ," Applied Physics Express, Vol. 7, No. 11, 112001, 2014.
doi:10.7567/APEX.7.112001

4. Sun, H., C. Gu, X. Chen, et al. "Ultra-wideband and broad-angle linear polarization conversion metasurface," Journal of Applied Physics, Vol. 121, No. 17, 174902, 2017.
doi:10.1063/1.4982916

5. Zang, X. F., H. H. Gong, Z. Li, et al. "Metasurface for multi-channel terahertz beam splitters and polarization rotators," Applied Physics Letters, Vol. 112, No. 17, 171111, 2018.
doi:10.1063/1.5028401

6. Savo, S., D. Shrekenhamer, and W. J. Padilla, "Liquid crystal metamaterial absorber spatial light modulator for THz applications," Advanced Optical Materials, Vol. 2, No. 3, 275-279, 2014.
doi:10.1002/adom.201300384

7. Liu, S., H. Chen, and T. J. Cui, "A broadband terahertz absorber using multi-layer stacked bars," Applied Physics Letters, Vol. 106, No. 15, 151601, 2015.
doi:10.1063/1.4918289

8. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, et al. "Multi-objective particle swarm optimization for the realization of a low profile bandpass frequency selective surface," International Symposium on Antennas and Propagation, 809-812, 2015.

9. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Simulation-driven particle swarm optimization of spatial phase shifters," International Conference on Electromagnetics in Advanced Applications, 428-430, 2016.

10. Afzal, M. U., A. Lalbakhsh, K, and P. Esselle, "Electromagnetic-wave beam-scanning antenna using near-field rotatable graded-dielectric plates," Journal of Applied Physics, Vol. 124, No. 23, 234901, 2018.
doi:10.1063/1.5049204

11. Afzal, M. U., K. P. Esselle, and A. Lalbakhsh, "A metasurface to focus antenna beam at offset angle," 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), 1-4, 2018.

12. Zhu, D. Z., E. B. Whiting, S. D. Campbell, et al. "Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants," ACS Photonics, Vol. 6, No. 11, 2741-2748, 2019.
doi:10.1021/acsphotonics.9b00717

13. Lalbakhsh, P., B. Zaeri, and A. Lalbakhsh, "An improved model of ant colony optimization using a novel pheromone update strategy," ICE Transactions on Information and Systems, Vol. 96, No. 11, 2309-2318, 2013.
doi:10.1587/transinf.E96.D.2309

14. Cui, T. J., M. Q. Qi, X. Wan, et al. "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.
doi:10.1038/lsa.2014.99

15. Hao, H., S. Du, and T. Zhang, "Small-size broadband coding metasurface for RCS reduction based on particle swarm optimization algorithm," Progress In Electromagnetics Research M, Vol. 81, 97-105, 2019.
doi:10.2528/PIERM19040905

16. Zhou, Y., X. Y. Cao, J. Gao, et al. "RCS reduction for grazing incidence based on coding metasurface," Electronics Letters, Vol. 53, No. 20, 1381-1383, 2017.
doi:10.1049/el.2017.2414

17. Liu, G., J. Liu, S. Zhao, et al. "Ultra-wideband low-detectable coding metasurface," Chinese Journal of Electronics, Vol. 28, No. 6, 1265-1270, 2019.
doi:10.1049/cje.2019.07.002

18. Jing, H. B., Q. Ma, G. D. Bai, et al. "Anomalously perfect reflections based on 3-Bit coding metasurfaces," Advanced Optical Materials, Vol. 7, No. 9, 1801742, 2019.
doi:10.1002/adom.201801742

19. Gao, X., W. L. Yang, H. F. Ma, et al. "A reconfigurable broadband polarization converter based on an active metasurface," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 6086-6095, 2018.
doi:10.1109/TAP.2018.2866636

20. Su, J., H. He, Z. Li, et al. "Uneven-layered coding metamaterial tile for ultra-wideband RCS reduction and diffuse scattering," Scientific Reports, Vol. 8, No. 1, 8182, 2018.
doi:10.1038/s41598-018-26386-5

21. Sun, H., C. Gu, X. Chen, et al. "Broadband and broad-angle polarization-independent metasurface for radar cross section reduction," Scientific Reports, Vol. 7, 40782, 2017.
doi:10.1038/srep40782

22. Bai, G. D., Q. Ma, W. K. Cao, et al. "Manipulation of electromagnetic and acoustic wave behaviors via shared digital coding metallic metasurface," Advanced Intelligent Systems, Vol. 1, No. 5, 1900038, 2019.
doi:10.1002/aisy.201900038

23. Liu, S., T. J. Cui, L. Zhang, et al. "Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams," Advanced Science, Vol. 3, No. 10, 1600156, 2016.
doi:10.1002/advs.201600156

24. Fang, B., X. Bie, Z. Yan, et al. "Manipulation of main lobe number and azimuth angle of terahertz-transmitted beams by matrix-form-coding metasurface," Applied Physics A, Vol. 125, No. 9, 651, 2019.
doi:10.1007/s00339-019-2946-5

25. Wu, R. Y., C. B. Shi, S. Liu, et al. "Addition theorem for digital coding metamaterials," Advanced Optical Materials, Vol. 6, No. 5, 1701236, 2018.
doi:10.1002/adom.201701236

26. Jing, Y., Y. Li, J. Zhang, et al. "Fast coding method of metasurfaces based on 1D coding in orthogonal directions," Journal of Physics D: Applied Physics, Vol. 51, No. 47, 475103, 2018.
doi:10.1088/1361-6463/aae2fd