Vol. 92
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-19
A PCB Planar Ground Radiation Antenna with Small Resonant Hole
By
Progress In Electromagnetics Research M, Vol. 92, 203-211, 2020
Abstract
Nowadays compact terminal is one of the general requirements of modern wireless communication systems. The size of antenna limits further reduction of the structure size. To reduce size, a compact planar antenna based on Printed Circuit Board (PCB) is presented in this paper. This antenna has a new small-scale radiation coupling structure with a small hole and a matching element. This structure makes the ground structure of the circuit become an effective radiator through resonant coupling. This compact design avoids an independent big size radiator and the coupling structure over one quarter wavelength. Meanwhile, it can make the circuit have a good antenna matching effect at specific frequency by adjusting the lumped capacitance. Through the simulation and experiment, the design of antenna in 2.4 GHz ISM band is verified. The measurement results show that the antenna has 1.82 dBi gain and 151˚ beamwidth. It can be used in the compact wireless communication devices with advantages of low profile, adjustable frequency, and compact size.
Citation
Zhiyi Tang, Chao Ma, Bin Zhang, and Jiangtao Huangfu, "A PCB Planar Ground Radiation Antenna with Small Resonant Hole," Progress In Electromagnetics Research M, Vol. 92, 203-211, 2020.
doi:10.2528/PIERM20032304
References

1. Wang, X. C., W.-Z. Lv, F. Liang, and W. Lei, "Theory and structures of meander-line antenna and its progress," Modern Radar, Vol. 32, No. 3, 66-72, 2010.

2. Liu, X. B., Y. S. Li, and W. H. Yu, "A simple dual-band antenna using a meander line and a tapered rectangle patch for WLAN applications," IEEE International Conference on Communication Problem-Solving, 542-545, 2015.

3. Huang, C. W. P., A. Z. Elsherbeni, J. J. Chen, and C. E. Smith, "FDTD characterization of meander line antennas for RF and wireless communications," Progress In Electromagnetics Research, Vol. 24, 185-199, 1999.
doi:10.2528/PIER99020204

4. Huang, X. J., D. Wang, and M. S. Tong, "Design of 2.4-GHz miniaturized antenna for Wi-Fi application based on meandered technique," 2017 Progress In Electromagnetics Research Symposium - Fall (PIERS - FALL), 2203-2206, Singapore, Nov. 19-22, 2017.

5. Yang, C. S., T. Y. Lin, D. C. Chang, and G. W. Huang, "Gap-coupled miniaturized antenna on IPD process for WLAN tablet computer," 2016 International Symposium on Antennas and Propagation (ISAP), 726-727, Okinawa, 2016.

6. Toycan, M., A. Kaka, V. Bashiry, and S. Abbasoğlu, "Multi-band and miniaturized antenna design for ultra wide band applications with band rejection characteristic," 2012 20th Signal Processing and Communications Applications Conference (SIU), 1-4, Mugla, 2012.

7. Mirza, M. M. M. and S. Dhage, "A miniaturized and improved antenna using metamaterial," 2017 International Conference on Intelligent Computing and Control (I2C2), 1-5, Coimbatore, 2017.

8. Constantine, A. and B. Balanis, Modern Antenna Handbook, 3rd Ed., 107-110, John Wiley & Sons, Inc., 2008.

9. Ren, W., Z. G. Shi, and K. S. Chen, "Compact dual-band slot antenna for WLAN applications," IET Internat. Conf. on Wireless, Mobile and Multimedia Networks, 1-4, Hangzhou, China, 2006.

10. Constantine, A. and B. Balanis, Modern Antenna Handbook, 3rd Ed., 157-201, John Wiley & Sons, Inc., 2008.

11. Deepak and Abhilasha, "Design of miniaturized micro-strip patch antenna for low frequency mobile communication," 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), 488-493, Solan, 2017.

12. Villanen, J., J. Ollikainen, O. Kivekas, and P. Vainikainen, "Coupling element based mobile terminal antenna structures," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2142-2153, 2006.
doi:10.1109/TAP.2006.877162

13. Huang, L. and P. Russer, "Electrically tunable antenna design procedure for mobile applications," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 2789-2797, 2008.
doi:10.1109/TMTT.2008.2006801

14. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. Ferrando-Bataller, "Wideband radiating ground plane with notches," Proc. IEEE AP-S. Int. Symp. Digest, 560-563, Washington, DC, USA, Jul. 2005.

15. Lindberg, P., E. Öjefors, and A. Rydberg, "Wideband slot antenna for low-profile hand-held terminal applications," Proc. 36th European Microw. Conf., 1698-1701, Manchester, UK, Sep. 2006.
doi:10.1109/EUMC.2006.281449

16. Li, C.-L., J.-P. Chang, and L.-J. Wong, "Miniature planar notch antenna of J shape," Electron. Lett., Vol. 42, No. 20, 1134-1135, 2006.
doi:10.1049/el:20061982

17. Kianinejad, A., Metamaterial Surface Plasmon-Based Transmission Lines and Antennas, 17-18, Springer Nature Singapore Pte Ltd., 2018.
doi:10.1007/978-981-10-8375-4

18. Garbacz, R. J., "A generalized expansion for radiated and scattering fields,", Ph.D., Engineering, Electrical, The Ohio State University, 1968.

19. Harrington, R. F. and J. R. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propagat., Vol. 19, Sep. 1971.

20. Icheln, C., "Methods for measuring RF radiation properties of small antennas,", Publications Report S, Helsinki University of Technology Radio Laboratory, 2001.

21. Bahl, I. J., "Lumped elements for RF and microwave circuits," Microwave Journal, 24-27, Nov. 2013.