Vol. 95
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-10
Mathematical Modeling of Stray Capacitance for Planar Coil at Megahertz Frequency
By
Progress In Electromagnetics Research M, Vol. 95, 71-82, 2020
Abstract
The coil stray capacitance is an essential factor for high-frequency coil application, such as wireless power transfer system. In this paper, in order to calculate the planar coil stray capacitance at Megahertz frequency, the theory model has been built. Based on the basic capacitance calculation equation, the mathematical model has been deduced carefully. Then, the mathematical model has been evaluated by a series of simulation models. In the simulation part, the error of the variables of the theory model has been analyzed carefully and quantitatively. In order to verify the theory and simulation model, the verification experiment has been done. The experimental results are consistent with the simulated ones and the theory model. The experimental and simulated results indicate that the theory model of the coil stray capacitance has a satisfactory accuracy, and the model has application potential in the field of wireless power transfer.
Citation
Jiaxiang Song, Huilin An, Yanhong Li, Chao Zhang, and Guo-Qiang Liu, "Mathematical Modeling of Stray Capacitance for Planar Coil at Megahertz Frequency," Progress In Electromagnetics Research M, Vol. 95, 71-82, 2020.
doi:10.2528/PIERM20032303
References

1. Massarini, A. and M. K. Kazimierczuk, "Self-capacitance of inductors," IEEE Transactions on Power Electronics, Vol. 12, No. 1, 33-40, 1997.
doi:10.1109/61.568222

2. Yun, H. C., G. Lee, and W. S. Park, "Empirical formulas for self-resonance frequency of Archimedean spiral coils and helical coils," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, 2012.

3. Sijoy, C. D. and S. Chaturvedi, "Calculation of accurate resistance and inductance for complex magnetic coils using the finite-difference time-domain technique for electromagnetics," IEEE Transactions on Plasma Science, Vol. 36, No. 1, 70-79, 2008.
doi:10.1109/TPS.2007.914693

4. Martinez, J. L., S. Babic, and C. Akyel, "On evaluation of inductance, dc resistance, and capacitance of coaxial inductors at low frequencies," IEEE Transactions on Magnetics, Vol. 50, No. 7, 1-12, 2014.
doi:10.1109/TMAG.2014.2303943

5. Rizzoli, G., M. Mengoni, A. Tani, G. Serra, and D. Casadei, "Wireless power transfer using a five-phase wound-rotor induction machine for speed-controlled rotary platforms," IEEE Transactions on Industrial Electronics, Vol. 67, No. 8, 6237-6247, 2020.
doi:10.1109/TIE.2019.2935988

6. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254

7. Beeby, S. P., M. J. Tudor, and N. M. White, "Energy harvesting vibration sources for microsystems applications," Measurement Science & Technology, Vol. 17, No. 12, 175-195, 2006.
doi:10.1088/0957-0233/17/12/R01

8. Li, S. and C. C. Mi, "Wireless power transfer for electric vehicle applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 4-17, 2015.
doi:10.1109/JESTPE.2014.2319453

9. Yao, R., et al., "A combined system for generating a uniform magnetic field and its application in the investigation of Efimov physics," Chinese Physics B, Vol. 27, No. 1, 16703-016703, 2018.
doi:10.1088/1674-1056/27/1/016703

10. Xu, Z., et al., "Equivalent magnetic dipole method used to design gradient coil for unilateral magnetic resonance imaging," Chinese Physics B, Vol. 27, No. 5, 058702, 2018.
doi:10.1088/1674-1056/27/5/058702

11. Lu, W.-G., et al., "Numerical analysis of magnetic-shielding effectiveness for magnetic resonant wireless power transfer system," Chinese Physics Letters, Vol. 34, No. 08, 155-158, 2017.
doi:10.1088/0256-307X/34/8/088801

12. Ezheiyan, M., et al., "Thermal analysis simulation of germanium zone refining process assuming a constant radio-frequency heating source," Chinese Physics Letters, Vol. 33, No. 5, 123-126, 2016.
doi:10.1088/0256-307X/33/5/058102

13. Li, S., "New discrete element models for three-dimensional impact problems," Chinese Physics Letters, Vol. 26, No. 12, 5-8, 2009.

14. Kellnberger, S., A. Rosenthal, A. Myklatun, G. G. Westmeyer, G. Sergiadis, and V. Ntziachristos, "Magnetoacoustic sensing of magnetic nanoparticles," Physical Review Letters, Vol. 116, No. 10, 108103.1-108103.6, 2016.
doi:10.1103/PhysRevLett.116.108103

15. Pillsbury, R. and W. Punchard, "A finite element/fourier expansion technique for the design of a pulsed radial gradient system for magnetic resonance imaging (MRI)," IEEE Transactions on Magnetics, Vol. 21, No. 6, 2273-2275, 1985.
doi:10.1109/TMAG.1985.1064196

16. Zhang, Z. and B. Zhang, "Angular-misalignment insensitive omnidirectional wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 67, No. 4, 2755-2764, 2020.
doi:10.1109/TIE.2019.2908604

17. Lin, D., C. Zhang, and S. Y. R. Hui, "Mathematic analysis of omnidirectional wireless power transfer — Part-II three-dimensional systems," IEEE Transactions on Power Electronics, Vol. 32, No. 1, 613-624, 2017.
doi:10.1109/TPEL.2016.2523506

18. Kim, Y. G. and S. Nam, "Determination of the impedance parameters of antennas and the maximum power transfer efficiency of wireless power transfer," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5132-5144, 2019.
doi:10.1109/TAP.2019.2912500

19. Minnaert, B. and N. Stevens, "Conjugate image theory applied on capacitive wireless power transfer," Energies, Vol. 10, No. 1, 46, 2017.
doi:10.3390/en10010046

20. Lu, H. Y., J. G. Zhu, and S. R. Y. Hui, "Experimental determination of stray capacitances in high frequency transformers," IEEE Transactions on Power Electronics, Vol. 15, No. 8, 1105-1112, 2003.

21. Riba, J. R., F. Capelli, and M. Moreno-Eguilaz, "Analysis and mitigation of stray capacitance effects in resistive high-voltage dividers," Energies, Vol. 12, No. 12, 2278, 2019.
doi:10.3390/en12122278