Vol. 92
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-14
Experimental Demonstration of a Multi-Beam Antenna with Full Parameters Based on Inductor-Capacitor Networks
By
Progress In Electromagnetics Research Letters, Vol. 92, 31-37, 2020
Abstract
In this paper, we experimentally demonstrate the performance of a multi-beam antenna based on inductor-capacitor (L-C) transmission line networks. The lumped element parameters of the antenna are derived according to the mapping relations between the Maxwell's equations and L-C network equations. The simulation results are in good agreement with the measurement ones, and the antenna performs well at a wide bandwidth with high directivity. The antenna has potential applications in future communication systems.
Citation
Chengfu Yang, Ming Huang, Haozheng Zhang, Jingjing Yang, Tinghua Li, Peng Li, and Fuchun Mao, "Experimental Demonstration of a Multi-Beam Antenna with Full Parameters Based on Inductor-Capacitor Networks," Progress In Electromagnetics Research Letters, Vol. 92, 31-37, 2020.
doi:10.2528/PIERL20032302
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.
doi:10.1126/science.1126493

3. Jiang, W. X., W. X. Tang, and T. J. Cui, "Transformation optics and applications in microwave frequencies," Progress In Electromagnetics Research, Vol. 149, 251-273, 2014.
doi:10.2528/PIER14102506

4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

5. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Physical Review Letters, Vol. 101, No. 20, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901

6. Yang, Y. H., S. S. Lin, Z. J. Wang, H. Chen, H. Wang, and E. Li, "Three-dimensional polyhedral invisible cloak consisting of homogeneous materials," Progress In Electromagnetics Research, Vol. 142, 31-40, 2013.

7. Liu, X., C. Li, K. Yao, X. K. Meng, W. Feng, B. H. Wu, and F. Li, "Experimental verification of broadband invisibility using a cloak based on inductor-capacitor networks," Applied Physics Letters, Vol. 95, No. 19, 191107, 2009.
doi:10.1063/1.3263149

8. Rajput, A. and K. V. Srivastava, "Arbitrary shaped reciprocal external cloak with nonsingular and homogeneous material parameters using expanding coordinate transformation," Plasmonics, Vol. 12, No. 3, 771-781, 2017.
doi:10.1007/s11468-016-0324-0

9. Li, C. Y., L. Xu, L. L. Zhu, S. Y. Zou, Q. H. Liu, Z. Y. Wang, and H. Y. Chen, "Concentrators for water waves," Physical Review Letters, Vol. 121, No. 10, 104501, 2018.
doi:10.1103/PhysRevLett.121.104501

10. YangOptics Communications, C. F., M. Huang, J. J. Yang, T. H. Li, F. C. Mao, and P. Li, "Arbitrarily shaped homogeneous concentrator and its layered realization," Optics Communications, Vol. 435, 150-158, 2019.

11. Madni, H. A., K. Hussain, W. X. Jiang, S. Liu, A. Aziz, A. Iqbal, A. Marhoob, and T. J. Cui, "A novel EM concentrator with open-concentrator region based on multi-folded transformation optics," Scientific Reports, Vol. 8, No. 1, 1-10, 2018.
doi:10.1038/s41598-018-28050-4

12. Zang, X. F., J. J. Li, J. F. Mao, and C. Jiang, "Experimental demonstration of the wave squeezing effect based on inductor-capacitor networks," Applied Physics Letters, Vol. 101, No. 7, 074104, 2012.
doi:10.1063/1.4747210

13. Yang, C. F., M. Huang, J. J. Yang, F. C. Mao, and T. H. Li, "Target illusion by shifting a distance," Optics Express, Vol. 26, No. 19, 24280-24293, 2018.
doi:10.1364/OE.26.024280

14. Yi, J. J., P. H. Tichit, S. N. Burokur, and A. de Lustrac, "Illusion optics: Optically transforming the nature and the location of electromagnetic emissions," Journal of Applied Physics, Vol. 117, No. 8, 084903, 2015.
doi:10.1063/1.4913596

15. Yi, J. J., S. N. Burokur, and A. de Lustrac, "Experimental validation of a transformation optics-based lens for beam steering," Applied Physics Letters, Vol. 107, No. 15, 154101, 2015.
doi:10.1063/1.4933111

16. Ebrahimpouri, M. and O. Quevedo-Teruel, "Bespoke lenses based on quasi-conformal transformation optics technique," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2256-2264, 2017.
doi:10.1109/TAP.2017.2679494

17. Yuan, S. H., Y. Y. Zhang, Q. Y. Zhang, B. S. Zou, and U. Schwingenschlogl, "Curvature effects in two-dimensional optical devices inspired by transformation optics," Applied Physics Letters, Vol. 109, No. 20, 201105, 2016.
doi:10.1063/1.4967245

18. Yi, J. J., M. T. Guo, R. Feng, B. Ratni, L. N. Zhu, D. H. Wenner, and S. N. Burokur, "Design and validation of an all-dielectric metamaterial medium for collimating orbital-angular-momentum vortex waves at microwave frequencies," Physical Review Applied, Vol. 12, No. 3, 034060, 2019.
doi:10.1103/PhysRevApplied.12.034060

19. Yang, Y., X. M. Zhao, and T. J. Wang, "Design of arbitrarily controlled multi-beam antennas via optical transformation," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, No. 4, 337, 2009.
doi:10.1007/s10762-009-9463-0

20. Cheng, Q., W. Xiang, and T. J. Cui, "Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials," Applied Physics Letters, Vol. 99, No. 13, 131913, 2011.
doi:10.1063/1.3645628

21. Wu, Q., Z. H. Jiang, O. Quevedo-Teruel, J. P. Turpin, W. X. Tang, Y. Hao, and D. H. Werner, "Transformation optics inspired multibeam lens antennas for broadband directive radiation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 5910-5922, 2013.
doi:10.1109/TAP.2013.2282905

22. Tichit, P. H., S. N. Burokur, and A. de Lustrac, "Spiral-like multi-beam emission via transformation electromagnetics," Journal of Applied Physics, Vol. 115, No. 2, 024901, 2014.
doi:10.1063/1.4858432

23. Zhang, K., X. M. Ding, D. L. Wo, F. R. Meng, and Q. Wu, "Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics," Applied Physics Letters, Vol. 108, No. 5, 053508, 2016.
doi:10.1063/1.4941545

24. Zhu, C. H., Z. G. Jiang, L. J. Liu, N. Liu, and Q. H. Liu, "A new strategy for transformation optics with index-only media," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4626-4635, 2019.
doi:10.1109/TAP.2019.2911361

25. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323

26. Li, C., X. K. Meng, X. Liu, F. Li, G. Y. Fang, H. Y. Chen, and C. T. Chan, "Experimental realization of a circuit-based broadband illusion-optics analogue," Physical Review Letters, Vol. 105, No. 23, 233906, 2010.
doi:10.1103/PhysRevLett.105.233906

27. Zang, X. F., Y. M. Zhu, X. B. Ji, L. Chen, Q. Hu, and S. L. Zhuang, "Broadband unidirectional behavior of electromagnetic waves based on transformation optics," Scientific Reports, Vol. 7, 40941, 2017.
doi:10.1038/srep40941