Vol. 91
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-04-27
A Novel Saliency-Based Method for Ship Detection in SAR Image
By
Progress In Electromagnetics Research Letters, Vol. 91, 9-16, 2020
Abstract
This paper presents a hierarchical saliency detector for ship detection in synthetic aperture radar (SAR) imagery. First, the nonlinear anisotropic diffusive process has been adopted to eliminate clutter, while preserving the target edge feature in SAR image. Second, each pixel in the filtered image is assigned to its corresponding super-pixel region via an adaptation of optimization technique. Third, Gamma manifold for feature representation has been presented for the modeling of intensity of all super-pixels in SAR imagery. Fourth, a threshold segmentation method is used to realize ship detection. The proposed method is an automatic detection process without any sliding window. Experimental results accomplished over real SAR images demonstrate that the proposed detection method can achieve a good performance.
Citation
Tingpeng Li, Hua Zhong, and Meng Yang, "A Novel Saliency-Based Method for Ship Detection in SAR Image," Progress In Electromagnetics Research Letters, Vol. 91, 9-16, 2020.
doi:10.2528/PIERL20030405
References

1. Lang, H., Y. Xi, and X. Zhang, "Ship detection in high-resolution SAR images by clustering spatially enhanced pixel descriptor," IEEE Trans. Geosci. Remote Sens., Vol. 57, No. 8, 5407-5423, 2019.
doi:10.1109/TGRS.2019.2899337

2. Salembier, P., S. Liesegang, and C. Lopez-Martınez, "Ship detection in SAR images based on maxtree representation and graph signal processing," IEEE Trans. Geosci. Remote Sens., Vol. 57, No. 5, 2709-2724, 2019.
doi:10.1109/TGRS.2018.2876603

3. Li, T., Z. Liu, R. Xie, and L. Ran, "An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 11, No. 1, 184-194, 2018.
doi:10.1109/JSTARS.2017.2764506

4. Cui, Z., Q. Li, Z. Cao, and N. Liu, "Dense attention pyramid networks for multi-scale ship detection in SAR images," IEEE Trans. Geosci. Remote Sens., Vol. 57, No. 11, 8983-8997, 2019.
doi:10.1109/TGRS.2019.2923988

5. Lin, Z., K. Ji, X. Leng, and G. Kuang, "Squeeze and excitation rank faster R-CNN for ship detection in SAR images," IEEE Geosci. Remote Sens. Lett., Vol. 16, No. 5, 751-755, 2019.
doi:10.1109/LGRS.2018.2882551

6. Fabbrini, L., M. Greco, M. Messina, and G. Pinelli, "Improved edge enhancing diffusion filter for speckle-corrupted images," IEEE Geosci. Remote Sens. Lett., Vol. 11, No. 1, 119-123, 2014.
doi:10.1109/LGRS.2013.2247377

7. Liu, Y., M. Yu, B. Li, and Y. He, "Intrinsic manifold SLIC: A simple and efficient method for computing content-sensitive superpixels," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 40, No. 3, 653-666, 2018.
doi:10.1109/TPAMI.2017.2686857

8. Forbes, C., M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, John Wiley & Sons, 2010.
doi:10.1002/9780470627242

9. Amari, S., Information Geometry and Its Application, Springer, 2016.
doi:10.1007/978-4-431-55978-8

10. Gao, G., Characterization of SAR Clutter and Its Applications to Land and Ocean Observations, Springer-Verlag, 2018.

11. Pappas, O., A. Achim, and D. Bull, "Superpixel-level CFAR detectors for ship detection in SAR imagery," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 9, 1397-1401, 2018.
doi:10.1109/LGRS.2018.2838263