1. Cohn, S. B. and R. Levy, "History of microwave passive components with particular attention to directional couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 1046-1054, 1984.
doi:10.1109/TMTT.1984.1132816
2. Garay, E., M.-Y. Huang, and H. Wang, "A cascaded self-similar rat-race hybrid coupler architecture and its compact fully integrated Ka-band implementation," IEEE/MTT-S Internation Microwave Symposium - IMS, 79-82, Philadelphia, 2018.
3. Aikawa, M. and H. Ogawa, "Double-sided MICs and their applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, 406-413, 1989.
doi:10.1109/22.20068
4. Ho, C.-H., L. Fan, and K. Chang, "Broad-band uniplanar hybrid-ring and branch-line couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 2116-2125, 1993.
doi:10.1109/22.260719
5. Fan, L., C.-H. Ho, S. Kanamaluru, and K. Chang, "Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde's CPW-slot couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 2749-2758, 1995.
doi:10.1109/22.475631
6. Scherr, S., S. Ayhan, G. Adamiuk, P. Pahl, and T. Zwick, "Ultrawide bandwidth-hybrid-coupler in planar technology," International Journal of Microwave Science and Technology, Vol. 2014, 486051, 2014.
doi:10.1155/2014/486051
7. Ang, K. S. and Y. C. Leong, "Converting baluns into broad-band impedance-transforming 180˚ hybrids," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1990-1995, 2002.
doi:10.1109/TMTT.2002.801353
8. Bialkowski, M. E. and Y. Wang, "Wideband microstrip 180˚ hybrid utilizing ground slots," IEEE Microwave and Wireless Components Letters, Vol. 20, 495-497, 2010.
doi:10.1109/LMWC.2010.2056677
9. Llamas, M. A., M. Ribo, D. Girbau, and L. Pradell, "A rigorous multimodal analysis and design procedure of a uniplanar 180˚ hybrid," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 1832-1839, 2009.
doi:10.1109/TMTT.2009.2022881
10. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.
11. Nakajima, M. and H. Tanabe, "A design technique for raising upper frequency limit of wide-band 180˚ hybrids," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 879-882, 1996.
12. Gruszczynski, S., K. Wincza, and K. Sachse, "Design of compensated coupled-stripline 3-dB directional couplers, phase shifters, and Magic-T's - Part II: Broadband coupled-line circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 3501-3507, 2006.
doi:10.1109/TMTT.2006.880649
13. Moghaddasi, J. and K. Wu, "Planar 180˚ hybrid couplers with non-interspersed ports for millimeter-wave applications," Journal of Microwave and Wireless Technologies, Vol. 12, 293, 2020.
doi:10.1017/S1759078719001533
14. Afroz, S. and K.-J. Koh, "W-band (92-100 GHz) phased-array receive channel with quadrature-hybrid-based vector modulator," IEEE Trans. on Circuits and Systems - I: Regular Papers, Vol. 65, 2070, 2018.
doi:10.1109/TCSI.2017.2779941
15. Hou, D., W. Hong, W. L. Goh, Y. Z. Xiong, and M. Annamalai, "CMOS hybrid couplers with improved phase inverter structure for D-band applications," IET Microwaves, Antennas & Propagation, Vol. 7, No. 7, 569, 2013.
doi:10.1049/iet-map.2012.0514
16. RF-Lambda, , , Accessed January 2020, [Online]. Available: https://www.rflambda.com/pdf/hybrid/RFHB26G40GPI.pdf.
17. Pulsar, Accessed January 2020, [Online]. Available: https://www.pulsarmicrowave.com/product/180_degree_hybrid/JSO-51-471-6S.
18. Krytar, , , Accessed January 2020, [Online]. Available: https://krytar.com/pdf/4100400.pdf.
19. Sung, Y., C. Ahn, and Y.-S. Kim, "Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 14, 7-9, 2004.
doi:10.1109/LMWC.2003.821499
20. Settaluri, R. K., G. Sundberg, A. Weisshaar, and V. Tripathi, "Compact folded line rat-race hybrid couplers," IEEE Microwave and Guided Wave Letters, Vol. 10, 61-63, 2000.
doi:10.1109/75.843101
21. Ahn, H., I.-S. Chang, and S.-W. Yun, "Miniaturized 3-dB ring hybrid terminated by arbitrary impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 2216-2221, 1994.
doi:10.1109/22.339745
22. Chang, H.-Y., P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G. Chern, "Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 20-30, 2006.
doi:10.1109/TMTT.2005.860900
23. Li, T.-W., J. S. Park, and H. Wang, "A 2-24 GHz 360˚ full-span differential vector modulator phase rotator with transformer-based poly-phase quadrature network," IEEE Custom Integrated Circuits Conference (CICC), 1-4, 2015.
24. Tseng, S.-C., C. Meng, C.-H. Chang, S.-H. Chang, and G.-W. Huang, "A silicon monolithic phase-inverter rat-race coupler using spiral coplanar striplines and its application in a broadband Gilbert mixer," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 1879-1888, 2008.
doi:10.1109/TMTT.2008.927312
25. Hamed, K. W., A. P. Freundorfer, and Y. M. M. Antar, "A new broadband monolithic passive differential coupler for K/Ka-band applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2527, 2006.
doi:10.1109/TMTT.2006.875809
26. Chirala, M. K. and B. A. Floyd, "Millimeter-wave lange and ring-hybrid couplers in a silicon technology for E-band applications," IEEE MTT-S International Microwave Symposium Digest, 1547-1550, 2006.
doi:10.1109/MWSYM.2006.249609
27. Hou, Z. J., Y. Yang, L. Chiu, X. Zhu, and Q. Xue, "Wideband millimeter-wave on-chip quadrature coupler with improved in-band flatness in 0.13-μm SiGe technology," IEEE Electron Device Letters, Vol. 39, No. 5, 652, 2018.
doi:10.1109/LED.2018.2814997
28. Park, J. S. and H. Wang, "A transformer-based poly-phase network for ultra-broadband quadrature signal generation," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4444, 2015.
doi:10.1109/TMTT.2015.2496187
29. Pfeiffer, C., T. Steffen, and B. Tomasic, "UWB millimeter-wave 180 hybrid couplers," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 967-968, Atlanta, 2019.
30. Monteath, G. D., "Coupled transmission lines as symmetrical directional couplers," Proceedings of the IEE - Part B: Radio and Electronic Engineering, Vol. 102, 383-392, 1955.
doi:10.1049/pi-b-1.1955.0078
31. Shelton, J. P. and J. A. Mosko, "Synthesis and design of wide-band equal-ripple TEM directional couplers and fixed phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, 462-473, 1966.
doi:10.1109/TMTT.1966.1126305
32. Gruszczynski, S. and K. Wincza, "Generalized methods for the design of quasi-ideal symmetric and asymmetric coupled-line sections and directional couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 1709-1718, 2011.
doi:10.1109/TMTT.2011.2138155
33. Gruszczynski, S., K. Wincza, and K. Sachse, "Design of compensated coupled-stripline 3-dB directional couplers, phase shifters, and magic-T's - Part I: Single-section coupled-line circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 3986-3994, 2006.
doi:10.1109/TMTT.2006.884689