Vol. 92
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-06-09
Compact LTCC Dual-Mode Filter with Non-Orthogonal Feeding and Harmonics Suppression for 5G Applications
By
Progress In Electromagnetics Research Letters, Vol. 92, 17-24, 2020
Abstract
A dual-mode band-pass filter (BPF) for the fifth generation (5G) N78 band applications is proposed based on a 2-layer low temperature cofired ceramic (LTCC) substrate. The proposed BPF is built with a square resonator and two pairs of open-stubs, which suppressed the 2nd-order and 3rd-order 27 and 21 dB, respectively. The proposed BPF not only achieved a size reduction of 50% compared with a single-mode implementation, but also possessed a non-orthogonal input/output (I/O) feeding style, which presents convenient interconnection and integration with neighboring devices. Moreover, the dual-mode BPF does not need a conventional disturbing element to excite two degenerate modes. Comparison and discussion are carried out as well.
Citation
Changkun Li, Li Qian, Ziyang Zhang, Yunheng Wang, and Bo Zhou, "Compact LTCC Dual-Mode Filter with Non-Orthogonal Feeding and Harmonics Suppression for 5G Applications," Progress In Electromagnetics Research Letters, Vol. 92, 17-24, 2020.
doi:10.2528/PIERL20022705
References

1. Okuyama, Y. S. S. and N. I. T. Takada, "5G radio performance and radio resource management specification,", 2019.

2. Shin, K. R. and K. Eilert, "Compact low cost 5G NR n78 band pass filter with silicon IPD technology," Proc. 2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON), 1-3, 2018.

3. Okuyama, Y. S. S. and N. I. T. Takada, "5G radio performance and radio resource management specifications,", 2019.

4. Hu, W., T. Yoshimasu, and H. Liu, "A novel dual-mode square loop passband filter with second spurious passband suppression," Proc. IEEE International Conference on Communications, Circuits and Systems, Vol. 4, 2273-2276, 2006.

5. Jeon, B. K., H. Nam, K. C. Yoon, B. W. Jeon, Y. W. Kim, and J. C. Lee, "Design of a patch dual-mode bandpass filter with second harmonic suppression using open stubs," Proc. IEEE Asia-Pacific Microwave Conference, 1106-1109, 2010.
doi:10.1002/mop.23123

6. Kuan, H. and H.-Y. Pan, "Design of a dual-mode bandpass filter with wide stopband performance for GPS application," Microwave Opt. Technol. Lett., Vol. 50, No. 2, 445-447, 2008.
doi:10.1002/mop.27444

7. Karpuz, C. and A. K. Gorur, "A novel compact configuration for dual-mode microstrip resonators and dual-band bandpass filter applications," Microwave Opt. Technol. Lett., Vol. 55, No. 4, 775-779, 2013.
doi:10.1002/mop.32031

8. Zhu, J.-M., et al. "Compact high-selectivity tunable dual-mode filter with constant bandwidth by adopting frequency-dependent S-L coupling," Microwave Opt. Technol. Lett., Vol. 62, No. 1, 108-111, 2020.
doi:10.2528/PIERC19061708

9. Cheng, Y., C. Mei, and L. Zhu, "Design of dual-mode band-pass filter with novel perturbation elements ," Progress In Electromagnetics Research C, Vol. 96, 59-71, 2019.

10. Zhou, B., et al. "Wide upper stopband and nonorthogonal I/O feed dual-mode LTCC filter," Proc. IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 1-3, 2016.

11. AXIEM, Applied Wave Research Corporation.