Vol. 92
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-07-22
Enhancement in Sensitivity of a Surface Plasmon Resonance Sensor with AlXGA1-Xas, 70% Al
By
Progress In Electromagnetics Research Letters, Vol. 92, 125-132, 2020
Abstract
The sensitivities of an aluminum gallium arsenide Al0.7Ga0.3As based surface plasmon resonance (SPR) sensor with gold (Au) and silver (Ag) layers are numerically analyzed and compared at 633 nm wavelength for different thicknesses of the Al0.7Ga0.3As. As the thickness of Al0.7Ga0.3As increases, the sensitivity of aluminum gallium arsenide Al0.7Ga0.3As with a specific metal (Au or Ag) layer increases. Our calculations show that the sensitivities of the proposed sensors are 80.55% (Au film) and 34.74% (Ag film) higher than the conventional Au and Ag sensors successively. The aluminum gallium arsenide Al0.7Ga0.3As based SPR sensor has the advantages of high angular sensitivity, narrow resonance widths, and low minimum reflectance, making it a much better choice for biosensing applications.
Citation
Amine Guerinik, and Fatima Tayeboun, "Enhancement in Sensitivity of a Surface Plasmon Resonance Sensor with AlXGA1-Xas, 70% Al," Progress In Electromagnetics Research Letters, Vol. 92, 125-132, 2020.
doi:10.2528/PIERL20022601
References

1. Lofas, S., M. Malmqvist, I. Ronnberg, E. Stenberg, L. Bo, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B, Vol. 5, 79-84, 1991.
doi:10.1016/0925-4005(91)80224-8

2. Ritchie, R. H., "Plasma losses by fast electrons in thin films," Phys. Rev., Vol. 106, 874-881, 1957.
doi:10.1103/PhysRev.106.874

3. Nylander, C., B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators, Vol. 3, 79-88, 1982.
doi:10.1016/0250-6874(82)80008-5

4. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, 442-453, 2008.
doi:10.1038/nmat2162

5. Halpern, A. R., J. B. Wood, Y. Wang, and R. M. Corn, "Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption," Acs Nano, Vol. 8, 1022-1030, 2014.
doi:10.1021/nn405868e

6. Gandhi, M. S., S. Chu, K. Senthilnathan, P. R. Babu, K. Nakkeeran, and Q. Li, "Recent advances in plasmonic sensor-based fiber optic probes for biological applications," Applied Sciences, Vol. 9, No. 5, 949, 2019.
doi:10.3390/app9050949

7. Yanase, Y., T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, "Surface plasmon resonance for cell-based clinical diagnosis," Sensors, Vol. 14, 4948-4959, 2014.
doi:10.3390/s140304948

8. Souto, D. E. P., J. Volpe, C. C. Goncalves, C. H. I. Ramos, and L. Kubota, "A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases," Talanta, Vol. 205, 120122, 2019.
doi:10.1016/j.talanta.2019.120122

9. Rich, R. L., L. R. Hoth, K. F. Geoghegan, T. A. Brown, P. K. LeMotte, S. P. Simons, P. Hensley, and D. G. Myszka, "Kinetic analysis of estrogen receptor/ligand interactions," Proc. Natl. Acad. Sci., Vol. 99, 8562-8567, USA, 2002.
doi:10.1073/pnas.142288199

10. Jadhav, G. P., P. K. Prathipati, and H. Chauhan, "Surface plasmon resonance, orbitrap mass spectrometry and raman advancements: Exciting new techniques in drug discovery," Expert Opinion on Drug Discovery, 1-4, 2020.

11. Sipova, H. and J. Homola, "Surface plasmon resonance sensing of nucleic acids: A review," Anal. Chimica Acta, Vol. 773, 9-23, 2013.
doi:10.1016/j.aca.2012.12.040

12. Yuan, W., H. P. Ho, R. K. Y. Lee, and S. K. Kong, "Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates," Appl. Opt., Vol. 48, 4329-4337, 2009.
doi:10.1364/AO.48.004329

13. Keshavarz, A. and S. Zangenehzadeh, "Sensitivity enhancement of a surface plasmon resonance biosensor based on adding Pb5Ge3O11 layer to diagnose the hypothyroidism," Plasmonics in Biology and Medecine XVII, Vol. 11257, 1125712, 2020.

14. Sternesjo, A., C. Mellgren, and L. Bjorck, "Determination of sulfamethazine residues in milk by a surface-plasmon resonance-based biosensor assay," Anal. Biochem., Vol. 226, 175-181, 1995.
doi:10.1006/abio.1995.1206

15. Haasnoot, W., K. Olieman, G. Cazemier, and R. Verheijen, "Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder," J. Agric. Food Chem., Vol. 49, 5201-5206, 2001.
doi:10.1021/jf010440p

16. Forzani, E. S., H. Q. Zhang, W. Chen, and N. J. Tao, "Detection of heavy metal ions indrinking water using a high-resolution differential surface plasmon resonance sensor," Environ. Sci. Technol., Vol. 39, 1257-1262, 2005.
doi:10.1021/es049234z

17. Mahmoudpour, M., J. E. N. Dolatabadi, M. Torbati, and A. Houmayouni-Rad, "Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions," Biosensors and Bioelectronics, Vol. 127, 72-84, 2019.
doi:10.1016/j.bios.2018.12.023

18. Pechprasarn, S., K. Ittipornnuson, T. Jungpanich, N. Pensupa, and N. Albutt, "Surface plasmon biosensor platform for food industry," Applied Mechanics and Materials, Vol. 891, 103-108, 2019.
doi:10.4028/www.scientific.net/AMM.891.103

19. Kretschmann, E., "The determination of the optical constants of metals by excitation of surface plasmons," Z. Physik, Vol. 241, 313-324, 1971.
doi:10.1007/BF01395428

20. Maurya, J. B., Y. K. Prajapati, S. Raikwar, and J. P. Saini, "A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas," Optic, Vol. 160, 428-433, 2018.

21. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sens. Actuators B — Chem., Vol. 54, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9

22. Choi, S. H., Y. L. Kim, and K. M. Byun, "Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors," Optics Express, Vol. 19, 458-466, 2011.
doi:10.1364/OE.19.000458

23. Yuan, X. C., B. Hong, Y. G. Tan, D. W. Zhang, et al. "Sensitivity-stability optimized surface plasmon resonance sensing with double metal layers," J. Opt. A Pure Appl. Opt., Vol. 8, 959-963, 2006.
doi:10.1088/1464-4258/8/11/005

24. Szunerits, S., X. Castel, and R. Boukherroub, "Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: Influence on stability and sensitivity," J. Phys. Chem. C, Vol. 112, 15813-15817, 2008.
doi:10.1021/jp8049137

25. Ong, B. H., X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B — Chem., Vol. 114, 1028-1034, 2006.
doi:10.1016/j.snb.2005.07.064

26. Lin, W. B., M. Lacroix, J. M. Chovelon, et al. "Development of a fiber-optic sensor based on surface plasmon resonance on silver film for monitoring aqueous media," Sens. Actuators B — Chem., Vol. 75, 203-209, 2001.
doi:10.1016/S0925-4005(01)00762-6

27. Chen, Y., R. S. Zheng, D. G. Zhang, et al. "Bimetallic chips for a surface plasmon resonance instrument," Appl. Opt., Vol. 50, 387-391, 2011.
doi:10.1364/AO.50.000387

28. Wang, K., R. Fu, G. Wang, H. C. Tran, B. K. Chang, and L. Yang, "High-performance Photonenhanced thermionic emission solar energy converters with AlxGa1−xAs/GaAs cathode under multilevel built-in electric field," Optics Communications, Vol. 402, 85-90, 2017.
doi:10.1016/j.optcom.2017.05.030

29. Chen, L., Y. Shen, S. Zhang, Y. Qian, and S. Xu, "Comparative research on reflection-mode GaAs photocathode with graded AlxGa1−xAs buffer layer," Optics Communications, Vol. 355, 186-190, 2015.
doi:10.1016/j.optcom.2015.06.053

30. Lunin, L. S., M. L. Lunina, O. V. Devitsky, and I. A. Sysoev, "Pulsed laser deposition of AlxGa1−xAs and GaP thin films onto Si substrates for photoelectricconverters," Semiconductors, Vol. 51, No. 3, 387-391, 2017.
doi:10.1134/S1063782617030174

31. Maitra, T., A. Pradhan, S. Mukherjee, et al. "Evaluation of spontaneous superlattice ordering in MOCVD grown AlxGa1−xAs epilayer on GaAs (100) using X-ray reflectivity and rocking curve analysis," Physica E: Low-dimensional Systems and Nanostructures, Vol. 106, 357-362, 2019.
doi:10.1016/j.physe.2018.03.020

32. Khageswar, S., M. S. Kumar, and G. P. Kumar, "He-Ne laser (632.8 nm) pre-irradiation gives protection against DNA damage induced by a near-infrared trapping beam," J. Biophotonics, Vol. 2, 140-144, 2009.
doi:10.1002/jbio.200810041

33. Han, L., X. Zhao, T. Huang, H. Ding, and C. Wu, "Comprehensive study of phase-sensitive SPR sensor based on metal-ITO hybrid multilayer," Plasmonics, Vol. 14, No. 6, 1743-1750, 2019.
doi:10.1007/s11468-019-00968-z

34. Gupta, B. D. and A. K Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study," Sens. Actuators B — Chem., Vol. 107, 40-46, 2005.
doi:10.1016/j.snb.2004.08.030

35. Kim, J. P. and A. M. Sarangan, "Temperature-dependent sellmeier equation for the refractive index of AlxGa1−xOptics Letters, Vol. 32, No. 5, 536-538, 2007.
doi:10.1364/OL.32.000536

36. Yamamoto, M., "Surface plasmon resonance (SPR) theory: Tutorial," Rev. Polarography, Vol. 48, No. 3, 209-237, 2002.
doi:10.5189/revpolarography.48.209

37. Chen, S. and C. Lin, "Sensitivity analysis of grapheme multilayer based surface plasmon resonance biosensor in the ultraviolet, visible and infrared regions," Applied Physics A, 125-230, 2019.

38. Srivastava, A., A. Verma, R. Das, and Y. K. Prajapati, "A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus," Optik, Vol. 203, 163430, 2019.