Vol. 91
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-23
Numerical Study of the Dielectric Omnidirectional Visible Mirror
By
Progress In Electromagnetics Research M, Vol. 91, 179-188, 2020
Abstract
It is well known that high refractive index contrast is essential to the formation of an omnidirectional Photonic Band Gap (PBG). It is generally cited also that the width of the omnidirectional PBG of a dielectric mirror is determined by the refractive-index contrast. But in this work, we show that this condition is not really general criteria. Dielectric mirror with higher refractive index contrast does not necessarily mean that it has the largest omnidirectional photonic band gap. So, we investigate the necessary conditions on the high and low refractive indices of the quarter wave layers to have the largest omnidirectional bandwidth in the visible range. We present a profound study of the omnidirectional band center wavelength and the bandwidth behaviors versus the layers refraction indices. It is shown therefore that one can modulate omnidirectional photonic band gap center by modulating the optical phase of the mirror.
Citation
Abir Mouldi, Hamdi Ayed, Mounir Kanzari, and Khaled Mohamed Khedher, "Numerical Study of the Dielectric Omnidirectional Visible Mirror," Progress In Electromagnetics Research M, Vol. 91, 179-188, 2020.
doi:10.2528/PIERM20021302
References

1. Li, Z.-Y., "Principles of the plane-wave transfer-matrix method for photonic crystals," Science and Technology of Advanced Materials, Vol. 6, 837-841, 2005.
doi:10.1016/j.stam.2005.06.013

2. Mouldi, A. and M. Kanzari, "Broad multilayer antireflection coating by apodized and chirped photonic crystal," Optics Communications, Vol. 284, 4124-4128, 2011.
doi:10.1016/j.optcom.2011.05.005

3. Qiang, H., L. Jiang, and X. Li, "Design of broad omnidirectional total reflectors based on onedimensional dielectric and magnetic photonic crystals," Optics & Laser Technology, Vol. 42, 105-109, 2010.
doi:10.1016/j.optlastec.2009.05.006

4. Srivastava, R. and S. P. Ojha, "Enhancement of omnidirectional Reflection bands in onedimensional photonic crystals with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
doi:10.2528/PIER06061602

5. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

6. Deopura, M., C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional visible reflector," Opt. Lett., Vol. 26, 1197-1199, 2001.
doi:10.1364/OL.26.001197

7. Han, P. and H. Wang, "Extension of omnidirectional reflection range in one-dimensional photonic crystals with a staggered structure," J. Opt. Soc. Am. B, Vol. 20, 1996-2001, 2003.
doi:10.1364/JOSAB.20.001996

8. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Molding the Flow of Light, 2nd Ed., 2007.

9. Bananej, A., S. M. Hamidi, W. Li, C. Li, and M. M. Tehranchi, "A flexible design for one-dimensional photonic crystals with controllable photonic bandgap width," Optical Materials, Vol. 30, No. 12, 1822-1827, 2008.
doi:10.1016/j.optmat.2007.11.028

10. Sang, Z. F. and Z. Y. Li, "Optical properties of one-dimensional photonic crystals containing graded material," Optics Communications, Vol. 259, 174-178, 2006.
doi:10.1016/j.optcom.2005.08.042

11. Galindo-Linaresa, E., P. Halevia, and A. S. Sanchez, "Tuning of one-dimensional Si/SiO2 photonic crystals at the wavelength of 1.54 μm," Solid State Communications, Vol. 142, 67-70, 2007.
doi:10.1016/j.ssc.2007.01.018

12. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER07010501

13. Wang, Z. and D. Liu, "A few points on omnidirectional band gaps in one-dimensional photonic crystals," Appl. Phys. B, Vol. 86, 473-476, 2007.
doi:10.1007/s00340-006-2479-4

14. Southwell, W. H., "Omnidirectional mirror design with quarter-wave dielectric stacks," Appl. Opt., Vol. 38, 5464-5467, 1999.
doi:10.1364/AO.38.005464

15. Lekner, J., "Omnidirectional reflection by multilayer dielectric mirrors," J. Opt. A: Pure Appl. Opt., Vol. 2, 349-352, 2000.
doi:10.1088/1464-4258/2/5/301

16. Li, Z., "Principles of the plane-wave transfer-matrix method for photonic crystals," Science and Technology of Advanced Materials, Vol. 6, 837-841, 2005.
doi:10.1016/j.stam.2005.06.013

17. Abeles, F., Ann Phys. Paris, Vol. 12, 596, 1950.

18. Tehranchi, A. and R. Kashyap, "Novel step-chirped quasi-phase matched gratings for broadband frequency doublers with high-efficiency flat response in nonlinear optical waveguides," 19th General Assembly, 47-51, Chicago, USA, August 7–16, 2008.

19. Bi, G. and H. Wang, "A theoretical study of the chirped and apodized photonic crystals," PIERS Proceedings, 571-574, Hangzhou, China, August 22–26, 2005.

20. Mouldi, A. and M. Kanzari, "Design of an omnidirectional mirror using one dimensional photonic crystal with graded geometric layers thicknesses," OPTIK, Vol. 123, 125-131, 2012.
doi:10.1016/j.ijleo.2011.03.010