Vol. 91
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-27
Beam Steering Reconfigurable Compact Antenna Based on Hybridization Between Split Ring Resonators
By
Progress In Electromagnetics Research M, Vol. 91, 189-196, 2020
Abstract
Reconfigrable antennas that are able to provide a high spatial diversity are increasingly adopted in many wireless applications. An original design of a planar printed compact antenna that achieves an electronically controlled beam steering by using metamaterial hybridization is presented in this paper. The designed antenna, made of coupled split ring resonators, is able to switch between 8 radiation patterns steering in 8 different directions at the working frequency of 2.45 GHz. The spatial diversity is assessed from the analysis of the correlation matrix between the patterns. This concept would provide a promising and compact alternative for low power telecommunication systems.
Citation
Kammel Rachedi, Julien de Rosny, Yvan Kokar, Dinh Thuy Phan Huy, and Abdelwaheb Ourir, "Beam Steering Reconfigurable Compact Antenna Based on Hybridization Between Split Ring Resonators," Progress In Electromagnetics Research M, Vol. 91, 189-196, 2020.
doi:10.2528/PIERM20021004
References

1. Qin, P.-Y., Y. J. Guo, S. Member, and A. R. Weily, "A pattern reconfigurable U-slot antenna and its applications in MIMO systems," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 516-528, 2012.
doi:10.1109/TAP.2011.2173439

2. Sarrazin, J., Y. Mahe, S. Avrillon, and S. Toutain, "Pattern reconfigurable cubic antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, 310-317, 2009.
doi:10.1109/TAP.2008.2011221

3. Chen, S.-H., J.-S. Row, and K.-L. Wong, "Reconfigurable square-ring patch antenna with pattern diversity," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 472-475, Feb. 2007.
doi:10.1109/TAP.2006.889950

4. Chen, R.-H. and J.-S. Row, "Single-fed microstrip patch antenna with switchable polarization," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 922-926, Apr. 2008.
doi:10.1109/TAP.2008.919211

5. Ourir, A., S. N. Burokur, R. Yahiaoui, and A. D. Lustrac, "Directive metamaterial-based subwavelength resonant cavity antennas — Applications for beam steering," Comptes Rendus Physique, Vol. 10, 414-422, Jun. 2009.
doi:10.1016/j.crhy.2009.01.004

6. Pendry, J., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

7. Zuffanelli, S., G. Zamora, P. Aguila, F. Paredes, F. Martin, and J. Bonache, "Analysis of the split ring resonator (SRR) antenna applied to passive UHF-RFID tag design," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 856-864, Mar. 2016.
doi:10.1109/TAP.2015.2513084

8. Alici, K. B. and E. Ozbay, "Electrically small split ring resonator antennas," Journal of Applied Physics, Vol. 101, 083104, Apr. 2007.
doi:10.1063/1.2722232

9. Cheng, X., D. E. Senior, J. J. Whalen, and Y.-K. Yoon, "Electrically small tunable split ring resonator antenna," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 2010.

10. Hand, T. H. and S. A. Cummer, "Controllable magnetic metamaterial using digitally addressable split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 262-265, 2009.
doi:10.1109/LAWP.2009.2012879

11. Jouvaud, C., A. Ourir, and J. de Rosny, "Adaptive metamaterial antenna using coupled tunable split-ring resonators," Electronics Letters, Vol. 49, 518-519, Apr. 2013.
doi:10.1049/el.2013.0398

12. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proceedings of the IEEE, Vol. 100, 2250-2261, Jul. 2012.

13. Jung, C., M. Lee, G. P. Li, and F. De Flaviis, "Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 455-463, 2006.
doi:10.1109/TAP.2005.863407

14. Shelley, S., J. Costantine, C. G. Christodoulou, D. E. Anagnostou, and J. C. Lyke, "FPGA-controlled switch-reconfigured antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 355-358, 2010.
doi:10.1109/LAWP.2010.2048550

15. White, C. R. and G. M. Rebeiz, "Single- and dual-polarized tunable slot-ring antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 19-26, 2009.
doi:10.1109/TAP.2008.2009664

16. Tawk, Y., A. R. Albrecht, S. Hemmady, G. Balakrishnan, and C. G. Christodoulou, "Optically pumped frequency reconfigurable antenna design," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 280-283, 2010.
doi:10.1109/LAWP.2010.2047373

17. Phan-Huy, D.-T., Y. Kokar, K. Rachedi, P. Pajusco, A. Mokh, T. Magounaki, R. Masood, C. Buey, P. Ratajczak, N. Malhouroux-Gaffet, J.-M. Conrat, J.-C. Prevotet, A. Ourir, J. D. Rosny, M. Crussiere, M. Helard, A. Gati, T. Sarrebourse, and M. D. Renzo, "Single-carrier spatial modulation for the internet of things: Design and performance evaluation by using real compact and reconfigurable antennas," IEEE Access, Vol. 7, 18978-18993, 2019.
doi:10.1109/ACCESS.2019.2895754