1. Aloisio, M. and P. Waller, "Analysis of helical slow-wave structures for space TWTs using 3-D electromagnetic simulators," IEEE Trans. on Electron Devices, Vol. 52, No. 5, 749-754, 2005.
doi:10.1109/TED.2005.845866
2. Di Paola, C., K. Zhao, S. Zhang, and G. F. Pedersen, "A novel lens antenna design based on a bed of nails metasurface for new generation mobile devices," The 14th European Conference on Antennas and Propagation European Conference on Antennas and Propagation, IEEE, 2020.
3. Pavone, S. C., E. Martini, M. Albani, S. Maci, C. Renard, and J. Chazelas, "A novel approach to low profile scanning antenna design using reconfigurable metasurfaces," 2014 International Radar Conference, 1-4, 2014.
4. Wangler, T. P., RF Linear Accelerators, Wiley-VCH, 2008.
doi:10.1002/9783527623426
5., https://europeanspallationsource.se/accelerator/linac, online; accessed 2 February 2020.
6. Mauro, G. S., A. Palmieri, F. Grespan, G. Torrisi, O. Leonardi, L. Celona, G. Sorbello, and A. Pisent, "Analytical method, based on slater perturbation theorem, to control frequency error when representing cylindrical structures in 3D simulators," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, 2019.
7. Li, Y.-J. and J.-M. Jin, "A new dual-primal domain decomposition approach for finite element simulation of 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2803-2810, 2007.
doi:10.1109/TAP.2007.905954
8. Zhang, H.-X., L. Huang, L. Zhou, Z. Zhao, Y.-T. Zheng, G. Zhu, and W.-Y. Yin, "Massively parallel simulation of antenna array using domain decomposition method and a high-performance computing scheme," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1251-1252, IEEE, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8888517
9. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, No. 3, 687-702, 2010.
doi:10.1016/j.cpc.2009.11.008
10. Castorina, G., G. Torrisi, G. Sorbello, L. Celona, and A. Mostacci, "Conductor losses calculation in two-dimensional simulations of H-plane rectangular waveguides," J. of Electromagnet. Wave, Vol. 33, No. 8, 981-990, 2019.
doi:10.1080/09205071.2019.1583136
11. Aloisio, M. and G. Sorbello, "One-third-of-pitch reduction technique for the analysis of ternary azimuthally periodic helical slow-wave structures," IEEE Trans. Electron Devices, Vol. 53, No. 6, 1467-1473, 2006.
doi:10.1109/TED.2006.873846
12., https://uspas.fnal.gov/materials/04UW/SNS Front-End.ppt.pdf, online; accessed 2 February 2020.
doi:10.1109/TED.2006.873846
13. Pozar, D., Microwave Engineering, 4th Ed., Wiley, 2012.
14. Chen, Y., R. Mittra, and P. Harms, "Finite-difference time-domain algorithm for solving Maxwell's equations in rotationally symmetric geometries," IEEE Trans. Microw. Theory Techn., Vol. 44, No. 6, 832-839, 1996.
doi:10.1109/22.506441
15. "Los Alamos National Laboratory, Superfish,".
doi:10.1109/22.506441
16. Halbach, K. and R. Holsinger, "SUPERFISH - A computer program for evaluation of RF cavities with cylindrical symmetry," Particle Accelerators, Vol. 7, 213-222, 1976.
17., ANSYS HFSS, Ansoft Corp., Pittsburgh, PA.