Vol. 93
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-06-10
Perturbative Approach for Fast and Accurate Evaluation of Quasi Axially-Symmetric Cavity Resonance Frequency in Drift Tube Linacs
By
Progress In Electromagnetics Research M, Vol. 93, 109-118, 2020
Abstract
In this paper we present an analytical method, employable with commercial full-wave electromagnetic CADs, which allows full-wave simulations of electromagnetically (EM) large structures, in terms of wavelength, such as linear accelerator cavities (LINACs) and a very accurate estimation of their operating frequency. The proposed technique is based on the exploitation of rotational symmetry through the definition of equivalent axially-symmetric volumes which replaces the non axially-symmetric ones inside the structure being analyzed. After a theoretical study, we show the successful application of the method in the real case study of a Drift Tube Linac (DTL) cell.
Citation
Giorgio Sebastiano Mauro, Santi Concetto Pavone, Giuseppe Torrisi, Antonio Palmieri, Luigi Celona, Santo Gammino, and Gino Sorbello, "Perturbative Approach for Fast and Accurate Evaluation of Quasi Axially-Symmetric Cavity Resonance Frequency in Drift Tube Linacs," Progress In Electromagnetics Research M, Vol. 93, 109-118, 2020.
doi:10.2528/PIERM20020702
References

1. Aloisio, M. and P. Waller, "Analysis of helical slow-wave structures for space TWTs using 3-D electromagnetic simulators," IEEE Trans. on Electron Devices, Vol. 52, No. 5, 749-754, 2005.
doi:10.1109/TED.2005.845866

2. Di Paola, C., K. Zhao, S. Zhang, and G. F. Pedersen, "A novel lens antenna design based on a bed of nails metasurface for new generation mobile devices," The 14th European Conference on Antennas and Propagation European Conference on Antennas and Propagation, IEEE, 2020.

3. Pavone, S. C., E. Martini, M. Albani, S. Maci, C. Renard, and J. Chazelas, "A novel approach to low profile scanning antenna design using reconfigurable metasurfaces," 2014 International Radar Conference, 1-4, 2014.

4. Wangler, T. P., RF Linear Accelerators, Wiley-VCH, 2008.
doi:10.1002/9783527623426

5., https://europeanspallationsource.se/accelerator/linac, online; accessed 2 February 2020.

6. Mauro, G. S., A. Palmieri, F. Grespan, G. Torrisi, O. Leonardi, L. Celona, G. Sorbello, and A. Pisent, "Analytical method, based on slater perturbation theorem, to control frequency error when representing cylindrical structures in 3D simulators," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, 2019.

7. Li, Y.-J. and J.-M. Jin, "A new dual-primal domain decomposition approach for finite element simulation of 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2803-2810, 2007.
doi:10.1109/TAP.2007.905954

8. Zhang, H.-X., L. Huang, L. Zhou, Z. Zhao, Y.-T. Zheng, G. Zhu, and W.-Y. Yin, "Massively parallel simulation of antenna array using domain decomposition method and a high-performance computing scheme," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1251-1252, IEEE, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8888517

9. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, No. 3, 687-702, 2010.
doi:10.1016/j.cpc.2009.11.008

10. Castorina, G., G. Torrisi, G. Sorbello, L. Celona, and A. Mostacci, "Conductor losses calculation in two-dimensional simulations of H-plane rectangular waveguides," J. of Electromagnet. Wave, Vol. 33, No. 8, 981-990, 2019.
doi:10.1080/09205071.2019.1583136

11. Aloisio, M. and G. Sorbello, "One-third-of-pitch reduction technique for the analysis of ternary azimuthally periodic helical slow-wave structures," IEEE Trans. Electron Devices, Vol. 53, No. 6, 1467-1473, 2006.
doi:10.1109/TED.2006.873846

12., https://uspas.fnal.gov/materials/04UW/SNS Front-End.ppt.pdf, online; accessed 2 February 2020.
doi:10.1109/TED.2006.873846

13. Pozar, D., Microwave Engineering, 4th Ed., Wiley, 2012.

14. Chen, Y., R. Mittra, and P. Harms, "Finite-difference time-domain algorithm for solving Maxwell's equations in rotationally symmetric geometries," IEEE Trans. Microw. Theory Techn., Vol. 44, No. 6, 832-839, 1996.
doi:10.1109/22.506441

15. "Los Alamos National Laboratory, Superfish,".
doi:10.1109/22.506441

16. Halbach, K. and R. Holsinger, "SUPERFISH - A computer program for evaluation of RF cavities with cylindrical symmetry," Particle Accelerators, Vol. 7, 213-222, 1976.

17., ANSYS HFSS, Ansoft Corp., Pittsburgh, PA.