Vol. 91
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-26
The Diffraction by Two Half-Planes and Wedge with the Fractional Boundary Condition
By
Progress In Electromagnetics Research M, Vol. 91, 1-10, 2020
Abstract
In this article, the diffraction of plane electromagnetic waves by double half-planes with fractional boundary conditions is considered. As particular cases, the diffractions by wedges and corners are considered for different values of fractional orders. The results are compared to the analytical ones. The interesting properties of wedge diffraction are outlined for intermediate fractional orders.
Citation
Vasil Tabatadze, Kamil Karaçuha, Eldar I. Veliyev, and Ertuğrul Karaçuha, "The Diffraction by Two Half-Planes and Wedge with the Fractional Boundary Condition," Progress In Electromagnetics Research M, Vol. 91, 1-10, 2020.
doi:10.2528/PIERM20020503
References

1. Engheta, N., "Use of fractional integration to propose some “fractional” solutions for the scalar Helmholtz Equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.

2. Engheta, N., "Fractional curl operator in electromagnetics," Microwave and Optical Technology Letters, Vol. 17, No. 2, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E

3. Engheta, N., "Phase and amplitude of fractional-order intermediate wave," Microwave and Optical Technology Letters, Vol. 21, No. 5, 338-343, 1999.
doi:10.1002/(SICI)1098-2760(19990605)21:5<338::AID-MOP10>3.0.CO;2-P

4. Veliev, E. I. and N. Engheta, "Generalization of Green’s theorem with fractional differ-integration," IEEE AP-S International Symposium & USNC/URSI National Radio Science Meeting, 2003.

5. Veliev, E. I., M. V. Ivakhnychenko, and T. M. Ahmedov, "Fractional boundary conditions in plane waves diffraction on a strip," Progress In Electromagnetics Research, Vol. 79, 443-462, 2008.
doi:10.2528/PIER07102406

6. Veliev, E. I., T. M. Ahmedov, and M. V. Ivakhnychenko, "Fractional operators approach and fractional boundary conditions," Electromagnetic Waves, V. Zhurbenko (ed.), IntechOpen, Rijeka, Croatia, 2011, doi: 10.5772/16300.

7. Veliev, E. I., K. Karacuha, E. Karacuha, "Scattering of a cylindrical wave from an impedance strip by using the method of fractional derivatives," XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2018.

8. Karacuha, K., E. I. Veliyev, V. Tabatadze, and E. Karacuha, "Analysis of current distributions and radar cross sections of line source scattering from impedance strip by fractional derivative method," Advanced Electromagnetics, Vol. 8, No. 2, 108-113, 2019.
doi:10.7716/aem.v8i2.981

9. Tabatadze, V., K. Karacuha, and E. I. Veliev, "The fractional derivative approach for the diffraction problems: plane wave diffraction by two strips with the fractional boundary conditions," Progress In Electromagnetics Research, Vol. 95, 251-264, 2019.
doi:10.2528/PIERC19062505

10. Karacuha, K., E. I. Veliyev, V. Tabatadze, and E. Karacuha, "Application of the method of fractional derivatives to the solution of the problem of plane wave diffraction by two axisymmetric strips of different sizes," URSI International Symposium on Electromagnetic Theory (EMTS), May 2019.

11. Veliyev, E. I., V. Tabatadze, K. Karacuha, and E. Karacuha, "The diffraction by the half-plane with the fractional boundary condition," Progress In Electromagnetics Research M, Vol. 88, 101-110, 2020.
doi:10.2528/PIERM19102408

12. Oberhettinger, F., "On the diffraction and reflection of waves and pulses by wedges and corners," Journal of Research of the National Bureau of Standards, Vol. 61, No. 5, November 1958.

13. Ciarkowski, A. D., J. O. Boersma, and R. Mittra, "Plane-wave diffraction by a wedge — A spectral domain approach," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 1, 20-29, 1984.
doi:10.1109/TAP.1984.1143190

14. Umul, Y. Z., "The theory of the boundary diffraction wave for wedge diffraction," Journal of Modern Optics, Vol. 55, No. 9, 1417-1426, 2008.
doi:10.1080/09500340701675197

15. Borovskii, A. V. and A. L. Galkin, "Diffraction on the wedge with an arbitrary angle," Bulletin of the Lebedev Physics Institute, Vol. 41, No. 1, 6-11, 2014.
doi:10.3103/S1068335614010023

16. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, John Wiley & Sons, 2014.
doi:10.1002/9781118753767

17. Castro, L. P. and D. Kapanadze, "Wave diffraction by wedges having arbitrary aperture angle," Journal of Mathematical Analysis and Applications, Vol. 421, No. 2, 1295-1314, 2015.
doi:10.1016/j.jmaa.2014.07.080

18. Nethercote, M. A., R. C. Assier, and I. D. Abrahams, "Analytical methods for perfect wedge diffraction: A review," Wave Motion, Vol. 93, 1024-1079, 2020.

19. Veliev, E. I., "Plane wave diffraction by a half-plane: A new analytical approach," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 10, 1439-1453, 1999.
doi:10.1163/156939399X00772

20. Ikiz, T., S. Koshikawa, K. Kobayashi, E. I. Veliev, and A. H. Serbest, "Solution of the plane wave diffraction problem by an impedance strip using a numerical-analytical method: E-polarized case," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 3, 315-340, Jan. 2001.
doi:10.1163/156939301X00481

21. Samko, S. G., A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, 1993.

22. Prudnikov, H. P., Y. H. Brychkov, and O. I. Marichev, Special Functions, Integrals and Series, Vol. 2, Gordon and Breach Science Publishers, 1986.

23. Honl, H., A. W. Maue, and K. Westpfahl, Theorie der Beugung, Springer-Verlag, 1961.

24. YouTube, , , [Online], Available: https://www.youtube.com/watch?v=uyVNQbpx6 M&list=PLsBKZFx kreW8aznSKGKGFVvwy9RRqefwy&index=1 [Accessed: 5-Feb-2020].