Vol. 91
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-09
Beam Steering Fabry Perot Array Antenna for mm -Wave Application
By
Progress In Electromagnetics Research M, Vol. 91, 81-89, 2020
Abstract
Beam-steering antennas especially with Butler matrix feed network are an effective remedy for wireless communications systems troubles such as disruptive effects in mm-wave frequency. In this work, a novel 4×4 Butler matrix feed beam steering antenna is designed at 35 GHz. A zeroth order resonance antenna element is used for bandwidth and radiation efficiency increment. To increase the gain of the antenna a novel mm-wave Fabry Perot layer which is composed of a partially reflective surface is designed. All designing steps are presented.
Citation
Saeid Karamzadeh, Vahid Rafiei, and Mesut Kartal, "Beam Steering Fabry Perot Array Antenna for mm -Wave Application," Progress In Electromagnetics Research M, Vol. 91, 81-89, 2020.
doi:10.2528/PIERM20020101
References

1. Ko, S. T. and J. H. Lee, "Aperture coupled metamaterial patch antenna with broad E-plane beamwidth for millimeter wave application," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1796-1797, Orlando, FL, 2013, doi: 10.1109/APS.2013.6711557.

2. Lee, C.-H. and J.-H. Lee, "Millimeter-wave wide beamwidth aperture-coupled antenna designed by mode synthesis," Microw. Opt. Technol. Lett., Vol. 57, 1255-1259, 2015, doi: 10.1002/mop.29058.
doi:10.1002/mop.29058

3. Ko, S. T. and J. H. Lee, "Hybrid zeroth-order resonance patch antenna with broad E-plane beamwidth," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 19-25, Jan. 2013, doi: 10.1109/TAP.2012.2220315.
doi:10.1109/TAP.2012.2220315

4. Artemenko, A., A. Mozharovskiy, A. Maltsev, R. Maslennikov, A. Sevastyanov, and V. Ssorin, "Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1188-1191, 2013, doi: 10.1109/LAWP.2013.2282212.
doi:10.1109/LAWP.2013.2282212

5. Gheethan, A., M. C. Jo, R. Guldiken, and G. Mumcu, "Microfluidic based Ka-band beam-scanning focal plane array," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1638-1641, 2013, doi: 10.1109/LAWP.2013.2294153.
doi:10.1109/LAWP.2013.2294153

6. Karamzadeh, S., V. Rafii, M. Kartal, and B. S. Virdee, "Compact and broadband 4×4 SIW Butler matrix with phase and magnitude error reduction," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 772-774, Dec. 2015, doi: 10.1109/LMWC.2015.2496785.
doi:10.1109/LMWC.2015.2496785

7. Karamzadeh, S., V. Rafii, M. Kartal, and B. S. Virdee, "Modified circularly polarised beam steering array antenna by utilised broadband coupler and 4×4 Butler matrix," IET Microwaves, Antennas & Propagation, Vol. 9, No. 9, 975-981, Jun. 18, 2015, doi: 10.1049/iet-map.2014.0768.
doi:10.1049/iet-map.2014.0768

8. Haraz, O. M. and A. R. Sebak, "Two-layer butterfly-shaped microstrip 4×4 Butler matrix for ultrawideband beam-forming applications," 2013 IEEE International Conference on Ultra-Wideband (ICUWB), 1-6, Sydney, NSW, 2013, doi: 10.1109/ICUWB.2013.6663812.

9. Alreshaid, A. T., M. S. Sharawi, S. Podilchak, and K. Sarabandi, "Compact millimeter-wave switched-beam antenna arrays for short range communications," Microw. Opt. Technol. Lett., Vol. 58, 1917-1921, 2016, doi:10.1002/mop.29940.
doi:10.1002/mop.29940

10. Hu, W., M. Arrebola, R. Cahill, et al. "94 GHz dual-reflector antenna with reflectarray subreflector," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3043-3050, 2009.
doi:10.1109/TAP.2009.2029275

11. Von Trentini, G., "Partially reflecting sheet arrays," IRE Transactions on Antennas and Propagation, Vol. 4, No. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455

12. Sauleau, R., P. Coquet, and T. Matsui, "Low-profle directive quasi-planar antennas based on millimetre wave Fabry-Perot cavities," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 150, No. 4, 274-278, 2003.
doi:10.1049/ip-map:20030416

13. Lee, Y., X. Lu, Y. Hao, S. Yang, J. R. G. Evans, and C. G. Parini, "Low-profle directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2893-2903, 2009.
doi:10.1109/TAP.2009.2029299

14. Tan, G.-N., X. Yang, H.-G. Xue, and Z. Lu, "A dual-polarized Fabry-Perot cavity antenna at Ka band with broadband and high gain," Progress In Electromagnetics Research C, Vol. 60, 179-186, 2015.
doi:10.2528/PIERC15110501

15. Hosseini, A., F. Capolino, and F. De Flaviis, "Gain enhancement of a V-band antenna using a Fabry-Perot cavity with a self-sustained all-metal cap with FSS," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 909-921, 2015.
doi:10.1109/TAP.2014.2386358

16. Hosseini, S. A., F. Capolino, and F. De Flaviis, "Q-band single layer planar Fabry-Perot cavity antenna with single integrated-feed," Progress In Electromagnetics Research C, Vol. 52, 135-144, 2014.
doi:10.2528/PIERC14061808