Vol. 92
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-07-14
Balanced Reconfigurable Filter Using Liquid Metal
By
Progress In Electromagnetics Research Letters, Vol. 92, 117-124, 2020
Abstract
A novel balanced bandpass reconfigurable microstrip filter is presented, where in differential mode, the filter operates in seven different bands, and each inductor LM represents a state of frequency. The common mode rejection ration (CMRR) is better than 30 dB for all the states. The central frequency of the filter is changed by liquid metal droplets flowing along a microfluidic channel placed at the middle of the inductors LM. For demonstration, a third-order filter is designed, simulated, and fabricated, operating in the S-band. Good agreement between simulation and measurement is presented.
Citation
Miguel-Antonio Romero-Ramirez, Jose Luis Olvera Cervantes, Tejinder Kaur Kataria, and Alonso Corona-Chavez, "Balanced Reconfigurable Filter Using Liquid Metal," Progress In Electromagnetics Research Letters, Vol. 92, 117-124, 2020.
doi:10.2528/PIERL20012306
References

1. Rais-Zadeh, M., J. T. Fox, D. D. Wentzloff, and Y. B. Gianchandani, "Reconfigurable radios: A possible solution to reduce entry costs in wireless phones," Proc. IEEE, Vol. 103, No. 3, 438-451, 2015.
doi:10.1109/JPROC.2015.2396903

2. Zhang, S. X., Z. H. Chen, and Q. X. Chu, "Compact tunable balanced bandpass filter with novel multi-mode resonator," IEEE Microw. Wirel. Components Lett., Vol. 27, No. 1, 43-45, 2017.
doi:10.1109/LMWC.2016.2629965

3. Deng, H. W., L. Sun, F. Liu, Y. F. Xue, and T. Xu, "Compact tunable balanced bandpass filter with constant bandwidth based on magnetically coupled resonators," IEEE Microw. Wirel. Components Lett., Vol. 29, No. 4, 264-266, 2019.
doi:10.1109/LMWC.2019.2902328

4. Rebeiz, G. M., K. Entesari, I. C. Reines, S.-J. Park, M. A. El-Tanani, A. Grichener, and A. R. Brown, "Tuning into RF MEMS," IEEE Microwave Magazine, Vol. 10, No. 6, 55-72, Oct. 2009.
doi:10.1109/MMM.2009.933592

5. Amir, S., M. Dousti, and K.Mafinezhad, "A novel analytical technique to design a tunable bandpass filter with constant bandwidth," International Journal of Electronics and Communications (AEU), Vol. 70, 1433-1442, 2016.

6. Dang, J. H., R. C. Gough, A. M. Morishita, A. T. Ohta, and W. A. Shiroma, "Liquid-metal-based reconfigurable components for RF front ends," IEEE Potentials, Vol. 34, No. 4, 24-30, 2015.
doi:10.1109/MPOT.2014.2360938

7. Liu, T., P. Sen, and C. J. Kim, "Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices," J. Microelectromechanical Syst., Vol. 21, No. 2, 443-450, 2012.
doi:10.1109/JMEMS.2011.2174421

8. Guo, S., B. J. Lei, W. Hu, W. A. Shiroma, and A. T. Ohta, "A tunable low-pass filter using a liquid-metal reconfigurable periodic defected ground structure," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, 2012.

9. Mumcu, G., A. Dey, and T. Palomo, "Frequency-agile bandpass filters using liquid metal tunable broadside coupled split ring resonators," IEEE Microw. Wirel. Components Lett., Vol. 23, No. 4, 187-189, 2013.
doi:10.1109/LMWC.2013.2247750

10. Pourghorban Saghati, A., J. S. Batra, J. Kameoka, and K. Entesari, "A miniaturized microfluidically reconfigurable coplanar waveguide bandpass filter with maximum power handling of 10 Watts," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 8, 2515-2525, 2015.
doi:10.1109/TMTT.2015.2446477

11. McClung, S. N., S. Saeedi, and H. H. Sigmarsson, "Band-reconfigurable filter with liquid metal actuation," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 6, 3073-3080, 2018.
doi:10.1109/TMTT.2018.2823307

12. Park, E. and S. Lim, "Microfluidic dual-band bandpass filter," 2017 IEEE Asia Pacific Microwave Conference (APMC), 762-764, 2017.
doi:10.1109/APMC.2017.8251559

13. Kaur, T. K., L. Osorio, J. L. Olvera Cervantes, J. R. Reyes-Ayona, and A. Corona-Chavez, "Microfluidic reconfigurable filter based on ring resonators," Progress In Electromagnetics Research Letters, Vol. 79, 59-63, 2018.

14. Zhou, W. J. and J. X. Chen, "Novel microfluidically tunable bandpass filter with precisely-controlled passband frequency," Electron. Lett., Vol. 52, No. 14, 1235-1236, 2016.
doi:10.1049/el.2016.1298

15. Zhou, W. J., H. Tang, and J. X. Chen, "Novel microfluidically tunable differential dual-mode patch filter," IEEE Microw. Wirel. Components Lett., Vol. 27, No. 5, 461-463, 2017.
doi:10.1109/LMWC.2017.2690874

16. Arbelaez-Nieto, A., E. Cruz-Perez, J. L. Olvera-Cervantes, A. Corona-Chavez, and H. Lobato-Morales, "The perfect balanced — A design procedure for balanced bandpass filters [Applications Notes]," IEEE Microwave Magazine, Vol. 16, No. 10, 54-65, Nov. 2015.
doi:10.1109/MMM.2015.2465712

17. Arbelaez-Nieto, A., J. L. Olvera-Cervantes, C. E. Saavedra, and A. Corona-Chavez, "Balanced liquid metal reconfigurable microstrip filter," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 14, 1453-1466, 2017.
doi:10.1080/09205071.2017.1351402

18. Pozar, D. M., Microwave Engineering, 4th Ed., Vol. I, John Wiley & Sons, Inc., 2012.

19. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619

20. Wu, C. H., C. H. Wang, and C. H. Chen, "Novel balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 2, 287-294, 2007.
doi:10.1109/TMTT.2006.889147

21. Struck, C. J., "Group delay," Comput. Sci. Commun. Dict., 697-697, 2000.