1. Kozakoff, D. J., Analysis of Radome-Enclosed Antennas, 2nd Ed., Artech House, 2010.
2. Shavit, R., Radome Electromagnetic Theory and Design, Wiley Online Library, 2018.
doi:10.1002/9781119410850
3. Cady, W. M., M. B. Karelitz, and L. A. Turner, Radar Scanners and Radomes, Vol. 26, McGraw-Hill Book Company, 1948.
4. Crone, G. A. E., A. W. Rudge, and G. N. Taylor, "Design and performance of airborne radomes: A review," IEE Proc., Vol. 128, 451-464, 1981.
5. Nair, R. U. and R. M. Jha, "Electromagnetic performance analysis of a novel monolithic radome for airborne applications," IEEE Transactions on Antennas and Propagation, Vol. 57, 3664-3668, 2009.
doi:10.1109/TAP.2009.2026595
6. Nair, R. U., S. Shashidhara, and R. Jha, "Novel inhomogeneous planar layer radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 854-856, 2012.
doi:10.1109/LAWP.2012.2210531
7. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005
8. Nair, R., M. Suprava, and R. Jha, "Graded dielectric inhomogeneous streamlined radome for airborne applications," Electronics Letters, Vol. 51, No. 11, 862-863, 2015.
doi:10.1049/el.2015.0462
9. Nair, R. U., S. Vandhana, and R. M. Jha, "Temperature-dependant electromagnetic performance predictions of a hypersonic streamlined radome," Progress In Electromagnetics Research, Vol. 154, 65-78, 2015.
doi:10.2528/PIER15052602
10. Zhou, L., Y. Pei, and D. Fang, "Dual-band A-sandwich radome design for airborne applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 218-221, 2015.
11. Xu, W., "Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5880-5885, 2014.
doi:10.1109/TAP.2014.2352361
12. Xu, W., B. Duan, P. Li, and Y. Qiu, "A new efficient thickness profile design method for streamlined airborne radomes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6190-6195, 2017.
doi:10.1109/TAP.2017.2754460
13. Xu, W., B. Duan, P. Li, Y. Zong, and Y. Qiu, "Novel compensation method for electromagnetic performance of dielectric radome based on reflector shaping," IET Microwaves, Antennas & Propagation, Vol. 9, No. 2, 125-132, 2014.
doi:10.1049/iet-map.2013.0712
14. Xu, W., B. Duan, P. Li, and Y. Qiu, "Study on the electromagnetic performance of inhomogeneous radomes for airborne applications. Part I: Characteristics of phase distortion and boresight error," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3162-3174, 2017.
doi:10.1109/TAP.2017.2694489
15. Xu, W., B. Duan, P. Li, and Y. Qiu, "Study on the electromagnetic performance of inhomogeneous radomes for airborne applications. Part II: The overall comparison with variable thickness radomes," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3175-3183, 2017.
doi:10.1109/TAP.2017.2694463
16. Xu, W., P. Li, and Y. Qiu, "Electromagnetic performance analysis of inhomogeneous airborne radomes for circular polarization applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 74-78, 2018.
doi:10.1109/LAWP.2018.2880946
17. Xu, W., P. Li, and Y. Qiu, "Efficient variable thickness radome design with insertion phase delay correction," International Journal of Antennas and Propagation, No. 9150361, 1-12, 2019.
18. Yazeen, P. M., C. Vinisha, S. Vandana, M. Suprava, and R. U. Nair, "Electromagnetic performance analysis of graded dielectric inhomogeneous streamlined airborne radome," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2718-2723, 2017.
doi:10.1109/TAP.2017.2669718