Vol. 90
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-06
A Microstrip Lossy Diplexer with Flat Channel Passbands
By
Progress In Electromagnetics Research M, Vol. 90, 99-108, 2020
Abstract
Passband flatness and band-edge selectivity in microwave filters with finite quality-factor resonators can be improved by the synthesis of lossy filters. This paper demonstrates the extension of this technique to a lossy diplexer by means of resistive coupling. A dual-mode stub-loaded resonator (SLR) junction and a fork-like feedline are used in the diplexer to address the challenge of independently controlling the external coupling from the common port to the two channel filters and therefore enable flexible realization of the channel bandwidth. The coupling matrices with resistive couplings for the lossy diplexer are generated. For verification, a microstrip lossy diplexer operating at 1.91 and 2.6 GHz was designed and tested. The flatness of the passband has been significantly improved, with a reduction of the passband insertion loss variation from 1.4/1.2 dB to 0.66/0.63 dB for the low/high band. The measured results are in good agreement with the simulations as well as the theoretical responses from the coupling matrix. This was also experimentally compared with a reference diplexer without resistive couplings.
Citation
Fan Zhang, Yun Wu, Liang Sun, Yang Gao, Yi Wang, and Jun Xu, "A Microstrip Lossy Diplexer with Flat Channel Passbands," Progress In Electromagnetics Research M, Vol. 90, 99-108, 2020.
doi:10.2528/PIERM20011605
References

1. Basti, A., A. Perigaud, S. Bila, S. Verdeyme, L. Estagerie, and H. Leblond, "Design of microstrip lossy filters for receivers in satellite transponders," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 9, 2014-2024, 2014.
doi:10.1109/TMTT.2014.2337285

2. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Design of microwave lossy filter based on substrate integrated waveguide (SIW)," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 5, 249-251, 2011.
doi:10.1109/LMWC.2011.2119471

3. Basti, A., S. Bila, S. Verdeyme, A. Perigaud, L. Estagerie, and H. Leblond, "Comparison of two approaches for the design of microstrip lossy filters," Proceedings of the 43rd European Microwave Conference, 21-24, Nuremberg, Germany, Oct. 2013.

4. Miraftab, V. and M. Yu, "Advanced coupling matrix and admittance function synthesis techniques for dissipative microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 10, 2429-2438, 2009.
doi:10.1109/TMTT.2009.2029625

5. Miraftab, V. and M. Yu, "Generalized lossy microwave filter coupling matrix synthesis and design," IEEE MTT-S International Microwave Symposium Digest, 627-630, Atlanta, GA, Jun. 2008.

6. Williams, A. E., W. G. Bush, and R. R. Bonetti, "Predistortion techniques for multicoupled resonator filters," 1984 IEEE MTT-S International Microwave Symposium Digest, 290-291, 1984.

7. Yu, M., W.-C. Tang, A. Malarky, V. Dokas, R. Cameron, and Y. Wang, "Predistortion technique for cross-coupled filters and its application to satellite communication systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 12, 2505-2515, 2003.
doi:10.1109/TMTT.2003.820172

8. Yu, M. and V. Miraftab, "Shrinking microwave filters," IEEE Microwave Magazine, Vol. 9, No. 5, 40-54, 2008.
doi:10.1109/MMM.2008.927636

9. Ni, J., W. Tang, J. Hong, and R. H. Geschke, "Design of microstrip lossy filter using an extended doublet topology," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 5, 318-320, 2014.
doi:10.1109/LMWC.2014.2309089

10. Hunter, I., A. Guyette, and R. D. Pollard, "Passive microwave receive filter networks using low-Q resonators," IEEE Microwave Magazine, Vol. 6, No. 3, 46-53, 2005.
doi:10.1109/MMW.2005.1511913

11. Qiu, L. F., L. S.Wu, W. Y. Yin, and J. F. Mao, "A flat-passband microstrip filter with nonuniform-Q dual-mode resonators," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 3, 183-185, 2016.
doi:10.1109/LMWC.2016.2525017

12. Guyette, A., I. Hunter, and R. Pollard, "The design of microwave bandpass filters using resonators with nonuniform Q," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 11, 3914-3922, 2006.
doi:10.1109/TMTT.2006.884627

13. Meng, M. and I. Hunter, "The design of parallel connected filter networks with non-uniform Q resonators," 2012 IEEE MTT-S International Microwave Symposium Digest, 1-3, 2012.

14. Mateu, J., A. Padilla, C. Collado, M. Martinez-Mendoza, E. Rocas, C. Ernst, and J. M. O. Callaghan, "Synthesis of 4th order lossy filters with uniform Q distribution," 2010 IEEE MTT-S International Microwave Symposium Digest, 568-571, 2010.
doi:10.1109/MWSYM.2010.5517741

15. Gao, B., L.-S. Wu, and J.-F. Mao, "Flat-passband substrate integrated waveguide filter with resistive couplings," Progress In Electromagnetics Research C, Vol. 62, 1-10, 2016.
doi:10.2528/PIERC15111503

16. Shang, X. B., Y. Wang, W. Xia, and M. J. Lancaster, "Novel multiplexer topologies based on allresonator structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 11, 3838-3845, 2013.
doi:10.1109/TMTT.2013.2284496

17. Chuang, M. L. and M.-T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 11, 583-585, 2011.
doi:10.1109/LMWC.2011.2168949

18. Wu, Y., Y. Wang, and L. Sun, "Independently controllable external coupling for resonant junctions in diplexers," 2018 IEEE MTT-S International Microwave Symposium Digest, 1068-1071, 2018.
doi:10.1109/MWSYM.2018.8439295

19. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619

20. Miraftab, V. and M. Yu, "Generalized lossy microwave filter coupling synthesis and design using mixed technologies," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 3016-3027, 2008.
doi:10.1109/TMTT.2008.2008267

21. Zhang, X. Y., J. X. Chen, Q. Xue, and S. M. Li, "Dual-band bandpass filters using stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 583-585, 2007.
doi:10.1109/LMWC.2007.901768

22. HFSS high frequency structure simulator, USA, [Online], Available: www. ansys. com.