Vol. 92
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-11
Vector Magnetic Near-Field Measurement in Unit Cell of Metamaterial
By
Progress In Electromagnetics Research M, Vol. 92, 127-136, 2020
Abstract
Near-field magnetic measurement is a simple but effective way of researching the magical electromagnetic properties of metamaterials. However, till now, the experiments in the field of metamaterials have involved only far-field macroscopic and near-field electric measurements because of the difficulty in isolating interference from electric fields. In this research, we design and fabricate a near-field magnetic probe with about an one-tenth wavelength size and 20 dB E-field rejection ratio, which can be combined with a parallel double-plate device integrating a system for measuring anisotropic vector magnetic field. As a verification measurement of plane waves and cylindrical waves, it got the clear vector field distribution characteristics and good anisotropy. Next we used the dipole to measure the typical metal split ring structure of the metamaterial. The measurement of the distribution of magnetic fields contributes to revealing the interaction mechanism between electromagnetic waves and metamaterials as well as the relationship between microscopic structural elements and macroscopic electromagnetic properties.
Citation
Yingyi Qi, Zehua Gao, Chuwen Lan, Maopeng Wu, and Qian Zhao, "Vector Magnetic Near-Field Measurement in Unit Cell of Metamaterial," Progress In Electromagnetics Research M, Vol. 92, 127-136, 2020.
doi:10.2528/PIERM20011401
References

1. Pendry, J. B., "Beyond metamaterials," Nat. Mater, Vol. 5, No. 10, 763-764, 2006.
doi:10.1038/nmat1740

2. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, 2001.
doi:10.1103/PhysRevB.65.195104

3. Justice, B. J., J. J. Mock, L. Guo, A. Degiron, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt. Express, Vol. 14, No. 19, 8694-8705, 2006.
doi:10.1364/OE.14.008694

4. Bi, K., Y. Guo, J. Zhou, G. Dong, H. Zhao, Q. Zhao, Z. Xiao, X. Liu, and C. Lan, "Negative and near zero refraction metamaterials based on permanent magnetic ferrites," Sci. Rep., Vol. 4, 4139, 2014.

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

6. Liu, R., C. Jic, J. J. Mock, J. Y. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.
doi:10.1126/science.1166949

7. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nat. Mater, Vol. 12, No. 1, 25-28, 2013.
doi:10.1038/nmat3476

8. Peng, R. G., Z. Q. Xiao, Q. Zhao, F. L. Zhang, Y. G. Meng, B. Li, J. Zhou, Y. C. Fan, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, "Temperature-controlled chameleonlike cloak," Phys. Rev. X, Vol. 7, 011033, 2017.

9. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, No. 6, 063006, 2010.
doi:10.1088/1367-2630/12/6/063006

10. Zhao, Q., Z. Q. Xiao, F. L. Zhang, J. M. Ma, M. Qiao, Y. G. Meng, C. W. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, "Tailorable zero-Phase delay of subwavelength particles toward miniaturized wave manipulation devices," Adv. Mater., Vol. 27, 6187, 2015.
doi:10.1002/adma.201502298

11. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402

12. Yang, X. M., X. Y. Zhou, Q. Cheng, H. F. Ma, and T. J. Cui, "Diffuse reflections by randomly gradient index metamaterials," Opt. Lett., Vol. 35, No. 6, 808-810, 2010.
doi:10.1364/OL.35.000808

13. Kaelberer, T., V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, "Toroidal dipolar response in a metamaterial," Science, Vol. 330, No. 6010, 1510-1512, 2010.
doi:10.1126/science.1197172

14. Guo, L. Y., M. H. Li, Q. W. Ye, B. X. Xiao, and H. L. Yang, "Electric toroidal dipole response in split-ring resonator metamaterials," Phys. Condens. Matter, Vol. 85, No. 6, 208-471, 2012.

15. Basharin, A. A., M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, "Dielectric metamaterials with toroidal dipolar response," Phys. Rev. X, Vol. 5, No. 1, 1-11, 2015.

16. Xu, S., A. Sayanskiy, A. S. Kupriianov, V. R. Tuz, P. Kapitanova, H. Sun, W. Han, and Y. S. Kivshar, "Experimental observation of toroidal dipole modes in all-dielectric metasurfaces," Adv. Opt. Mater., Vol. 7, No. 4, 1801166, 2018.
doi:10.1002/adom.201801166

17. Carobbi, C. F. M., L. M. Millanta, and L. Chiosi, "The high-frequency behavior of the shield in the magnetic-field probes," IEEE Int. Symp. Electromagn. Compat., Vol. 1, 35-40, 2000.

18. Balanis, C. A., Antenna Theory: Analysis and Design, Harper & Row, 1996.