Vol. 91
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-08
A Silicon-Based Ferrite Loaded Miniaturized on-Chip Antenna with Enhanced Gain for Implantable Bio-Telemetry Applications
By
Progress In Electromagnetics Research M, Vol. 91, 69-79, 2020
Abstract
To make a truly compact size system on-chip (SoC) device for wireless bio-telemetry application, the design of a miniaturized on-chip antenna (OCA) with enhanced gain becomes a prime challenge in recent time. Unsuitable Si (Silicon) substrate and relatively larger antenna size at lower microwave frequencies make it even more challenging for the researchers. In this work, an OCA is designed on a low resistive (ρ = 10 ohm.cm) Si substrate by using standard CMOS technology process. The top metal layer of CMOS layout has been used for designing the antenna to reduce fabrication complexity. By using slot miniaturization technique, the proposed antenna size of λ0/22 x λ0/21.4 mm2 is achieved and operable at ISM 915 MHz band for biotelemetry applications. A gain enhancement technique for OCA is proposed by introducing a 0.2 μm thin film of Cobalt Zirconium Oxide (CoZrO) ferrite material, and the gain is enhanced by +12.28 dB with the bandwidth and fractional bandwidth (FBW) of 1.14 GHz and 124%, respectively. The simulation results of the proposed antenna with coating of bio-compatible material show its potential applicability for implantable bio-telemetry applications. An equivalent circuit of the proposed OCA is presented and verified by ADS circuit simulator.
Citation
Harshavardhan Singh, and Sujit Kumar Mandal, "A Silicon-Based Ferrite Loaded Miniaturized on-Chip Antenna with Enhanced Gain for Implantable Bio-Telemetry Applications," Progress In Electromagnetics Research M, Vol. 91, 69-79, 2020.
doi:10.2528/PIERM20011307
References

1. Bloom, D. E., S. Black, and R. Rappuoli, "Emerging infectious diseases: A proactive approach," Proc. Natl. Acad. Sci., Vol. 114, No. 16, 4055-4059, 2017.
doi:10.1073/pnas.1701410114

2. Kiourti, A. and K. S. Nikita, "A review of implantable patch antennas for biomedical telemetry: Challenges and solutions," IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, June 2012.
doi:10.1109/MAP.2012.6293992

3. Volakis, J. L., C.-C. Chen, and K. Fujimoto, Small Antennas: Miniaturization Techniques and Applications, McGraw Hill, 2010.

4. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, September 2004.
doi:10.1109/TAP.2004.834135

5. Payandehjoo, K. and R. Abhari, "On-chip implementation of compact electromagnetic bandgap structures for 60 GHz applications," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 1816-1819, Spokane, WA, 2011.

6. Deng, X., Y. Li, C. Liu, W. Wu, and Y. Xiong, "340 GHz on-chip 3-D antenna with 10 dBi gain and 80% radiation efficiency," IEEE Transactions on Terahertz Science and Technology, Vol. 5, No. 4, 619-627, July 2015.
doi:10.1109/TTHZ.2015.2424682

7. Bijumon, P. V., Y. M. M. Antar, A. P. Freundorfer, and M. Sayer, "Dielectric resonator antenna on silicon substrate for system on-chip applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3404-3410, November 2008.
doi:10.1109/TAP.2008.2005537

8. Nafe, M., A. Syed, and A. Shamim, "Gain-enhanced on-chip folded dipole antenna utilizing artificial magnetic conductor at 94 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2844-2847, 2017.
doi:10.1109/LAWP.2017.2749308

9. Singh, H., S. Mandal, S. K. Mandal, and A. Karmakar, "Design of miniaturised meandered loop on-chip antenna with enhanced gain using shorted partially shield layer for communication at 9.45 GHz," IET Microwaves, Antennas & Propagation, Vol. 13, No. 7, 1009-1016, December 6, 2019.
doi:10.1049/iet-map.2018.5974

10. Pan, S., D. Wang, C. Guclu, and F. Capolino, "High impedance layer for CMOS on-chip antenna at millimeter waves," IEEE Antennas Propagation Symp., 903-907, 2011.

11. Liu, Y., V. Pano, D. Patron, K. Dandekar, and B. Taskin, "Innovative propagation mechanism for inter-chip and intra-chip communication," IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), 1-6, Cocoa Beach, FL, 2015.

12. Liu, P., L. Chang, Y. Li, Z. Zhang, S. Wang, and Z. Feng, "A millimeter-wave micromachined air-filled slot antenna fed by patch," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 10, 1683-1690, October 2017.
doi:10.1109/TCPMT.2017.2711361

13. Dey, D. and R. S. Kshetrimayum, "High gain and efficient patch antenna on micromachined GaAs EBGs with increased bandwidth," 2006 Annual IEEE India Conference, 1-5, New Delhi, 2006.

14. Bae, S., et al., "Miniaturized broadband ferrite T-DMB antenna for mobile-phone applications," IEEE Transactions on Magnetics, Vol. 46, No. 6, 2361-2364, June 2010, doi: 10.1109/TMAG.2010.2044376.
doi:10.1109/TMAG.2010.2044376

15. Von Aulock, W. H., Handbook of Microwave Ferrites, Academic Press, 1965.

16. Mitu, S. S. I. and F. Sultan, "Beam scanning properties of a ferrite loaded microstrip patch antenna," International Journal of Antennas and Propagation, Vol. 2015, Article ID 697409, 8 pages, 2015.

17. Cheema, H. and A. Shamim, "The last barrier: on-chip antennas," IEEE Microw. Mag., Vol. 14, No. 1, 79, January 2013.
doi:10.1109/MMM.2012.2226542

18. Bahl, I. J. and P. Bhartia, Microstrip Antennas, 46, Artech House, 1980.

19. Meshram, M. K. and B. R. Vishvakarma, "Gap-coupled microstrip array antenna for wide band operation," Int. J. Electronics, Vol. 88, 1161, 2001.
doi:10.1080/00207210110071288

20. Pele, I., A. Chousseaud, and S. Toutain, "Simultaneous modeling of impedance and radiation pattern antenna for UWB pulse modulation," IEEE Antennas and Propagation Society Symposium, Vol. 2, 1871-1874, Monterey, CA, USA, 2004.

21. Pozar, D. M. and D. H. Schaubert, Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, 1995.

22. Li, C. and T. Chiu, "340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications," IEEE Transactions on Terahertz Science and Technology, Vol. 7, No. 3, 284-294, May 2017.
doi:10.1109/TTHZ.2017.2670234

23. McKinzie, W. E., D. M. Nair, B. A. Thrasher, M. A. Smith, E. D. Hughes, and J. M. Parisi, "60-GHz 2 × 2 LTCC patch antenna array with an integrated EBG structure for gain enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1522-1525, 2016.
doi:10.1109/LAWP.2016.2517141

24. Mou, J., Q. Xue, D. Guo, and X. Lv, "A THz detector chip with printed circular cavity as package and enhancement of antenna gain," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1242-1249, April 2016.
doi:10.1109/TAP.2016.2526068

25. Hou, D., Y. Xiong, W. Goh, S. Hu, W. Hong, and M. Madihian, "130-GHz on-chip meander slot antennas with stacked dielectric resonators in standard CMOS technology," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4102-4109, September 2012.
doi:10.1109/TAP.2012.2207077