Vol. 91
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-07
Parameter Trade-off Between Electric Load, Quality Factor and Coupling Coefficient for Performance Enrichment of Wireless Power Transfer System
By
Progress In Electromagnetics Research M, Vol. 91, 49-58, 2020
Abstract
Accomplishing high efficiency with acceptable output load power is a formidable design challenge in resonant wireless power transfer (WPT) system employed for charging Electric Vehicle (EV). This necessitates a trade-off among the assorted parameters like coil quality factor, coupling coefficient and electric load for performance enrichment of resonant WPT system. It is realized that the high value of quality factor does not ensure higher power transfer efficiency but it is largely influenced by the electric load. For each coupling coefficient there exists an optimum load for which maximum power can be delivered. It is also perceived that for a fixed vertical separation gap of the coils, increasing receiver coil quality factor has no profound effect on the output load power as well as efficiency. The circuit model based analytical results agree well with the comprehensive experimental results and elucidate the strategic design guidelines for a competent wireless electric vehicle charging system.
Citation
Sushree Sangita Biswal, Durga Prasanna Kar, and Satyanarayan Bhuyan, "Parameter Trade-off Between Electric Load, Quality Factor and Coupling Coefficient for Performance Enrichment of Wireless Power Transfer System," Progress In Electromagnetics Research M, Vol. 91, 49-58, 2020.
doi:10.2528/PIERM20010902
References

1. Kiani, M., U. Jow, and M. Ghovanloo, "Design and optimization of a 3-coil inductive link for efficient wireless power transmission," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No. 6, 579-591, 2011.
doi:10.1109/TBCAS.2011.2158431

2. Sergeant, P. and A. Van den Bossche, "Inductive coupler for contactless power transmission," IET Electr. Power Appl., Vol. 2, No. 1, 1-7, 2008.
doi:10.1049/iet-epa:20070059

3. Elliot, G., G. Covic, D. Kacprzak, and J. T. Boys, "A new concept: Asymmetrically pick-ups for inductively coupled power transfer monorail systems," IEEE Trans. Magn., Vol. 42, No. 10, 3389-3391, 2006.
doi:10.1109/TMAG.2006.879619

4. Li, S. and C. C. Mi, "Wireless power transfer for electric vehicle applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 4-17, 2015.
doi:10.1109/JESTPE.2014.2319453

5. Hasanzadeh, S. and S. Vaez-Zadeh, "Design of a wireless power transfer system for high power moving applications," Progress In Electromagnetics Research M, Vol. 28, 258-271, 2013.
doi:10.2528/PIERM12102210

6. Deng, B., B. Jia, and Z. Zhang, "Dynamic wireless charging for roadway-powered electric vehicles: A comprehensive analysis and design," Progress In Electromagnetics Research C, Vol. 69, 1-10, 2016.
doi:10.2528/PIERC16071106

7. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strong coupled magnetic resonances," Sci. Express, Vol. 317, No. 5834, 83-86, 2007.

8. Bou, E., E. Alarcon, and J. Gutierrez, "A comparison of analytical models for resonant inductive coupling wireless power transfer," PIERS Proceedings, 689-693, Moscow, Russia, August 19–23, 2012.

9. Sample, A. P., D. A. Meyer, and J. R. Smith, "Analysis, experimental results and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, 544-554, 2011.
doi:10.1109/TIE.2010.2046002

10. Low, Z. N., R. A. Chinga, R. Tseng, and J. Lin, "Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system," IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, 1801-1812, 2009.
doi:10.1109/TIE.2008.2010110

11. Jow, U. M. and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," IEEE Trans. Biomed. Circuits Syst., Vol. 1, No. 3, 193-202, 2007.
doi:10.1109/TBCAS.2007.913130

12. Hui, S. and W. Ho, "A new generation of universal contactless battery charging platform for portable consumer electronic equipment," IEEE Trans. Power Electron., Vol. 20, No. 3, 620-627, 2005.
doi:10.1109/TPEL.2005.846550

13. Rotaru, M. D., R. Tanzania, R. Ayoob, T. Y. Kheng, and J. K. Sykulski, "Numerical and experimental study of the effects of load and distance variation on wireless power transfer systems using magnetically coupled resonators," IET Sci. Meas. Technol., Vol. 9, No. 2, 160-171, 2015.
doi:10.1049/iet-smt.2014.0175

14. Nicoli, P. P., A. R. Esteva, and F. Silveira, "Bidirectional analysis and design of RFID using an additional resonant coil to enhance read range," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2357-2367, 2016.
doi:10.1109/TMTT.2016.2573275

15. Li, X., X. Dai, Y. Li, Y. Sun, Z. Ye, and Z. Wang, "Coupling coefficient identification for maximum power transfer in WPT system via impedance matching," IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), 2016.

16. Mai, R., Y. Liu, Y. Li, P. Yue, G. Cao, and Z. He, "An active-rectifier-based maximum efficiency tracking method using an additional measurement coil for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 33, No. 1, 716-728, 2018.
doi:10.1109/TPEL.2017.2665040

17. Barzegaran, M. R., H. Zargarzadeh, and O. A. Mohammed, "Wireless power transfer for electric vehicle using an adaptive robot," IEEE Transactions on Magnetics, Vol. 53, No. 6, 2017.
doi:10.1109/TMAG.2017.2664800

18. Zhang, X., H. Meng, B. Wei, S. Wang, and Q. Yang, "Mutual inductance calculation for coils with misalignment in wireless power transfer," The Journal of Engineering, 16, 2019.

19. Li, J., Q. Deng, W. Hu, and H. Zhu, "Research on quality factor of the coils in wireless power transfer system based on magnetic coupling resonance," IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), 123-127, 2017.