Vol. 92
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-14
Computational Analysis of Graphene-Based Periodic Structures via a Three-Dimensional Field-Flux Eigenmode Finite Element Formulation
By
Progress In Electromagnetics Research M, Vol. 92, 157-167, 2020
Abstract
We present a three-dimensional finite element (FEM) field-flux eigenmode formulation, able to provide accurate modeling of the propagation characteristics of periodic structures featuring graphene. The proposed formulation leads to a linear eigenmode problem, where the effective refractive index is an unknown eigenvalue; the electric field intensity and magnetic flux density are the state variables; and graphene's contribution is efficiently incorporated via a finite conductivity boundary condition. The FEM formulation is spurious-mode free and capable of providing accurate dispersion diagrams and field distributions for arbitrary propagation directions, as opposed toother analytical or numerical approaches, while also efficiently dealing with graphene's dispersive nature. The novelty of the presented approximation is substantiated by computational results for structures incorporating graphene of random periodicity, both within passbands and bandgap frequencies.
Citation
Vasilis Salonikios, Michalis Nitas, Savvas Raptis, and Traianos V. Yioultsis, "Computational Analysis of Graphene-Based Periodic Structures via a Three-Dimensional Field-Flux Eigenmode Finite Element Formulation," Progress In Electromagnetics Research M, Vol. 92, 157-167, 2020.
doi:10.2528/PIERM20010302
References

1. Nikitin, A. Y., F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, "Edge and waveguide terahertz surface plasmon modes in graphene microribbons," Phys. Rev. B, Vol. 84, 161407, 2011.
doi:10.1103/PhysRevB.84.161407

2. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.
doi:10.1039/C4NR03143A

3. Vicarelli, L., M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, "Graphene field-effect transistors as room-temperature terahertz detectors," Nat. Mater., Vol. 11, 865-871, 2012.
doi:10.1038/nmat3417

4. Tomadin, A., A. Tredicucci, V. Pellegrini, M. S. Vitiello, and M. Polini, "Photocurrent-based detection of terahertz radiation in graphene," Appl. Phys. Lett., Vol. 103, 211120, 2013.
doi:10.1063/1.4831682

5. Spirito, D., D. Coquillat, S. L. De Bonis, A. Lombardo, M. Bruna, A. C. Ferrari, V. Pellegrini, A. Tredicucci, W. Knap, and M. S. Vitiello, "High performance bilayer-graphene terahertz detectors," Appl. Phys. Lett., Vol. 104, 061111, 2014.
doi:10.1063/1.4864082

6. Koppens, F. H. L., T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, "Photodetectors based on graphene, other two-dimensional materials and hybrid systems," Nat. Nanotechnol., Vol. 9, 780-793, 2014.
doi:10.1038/nnano.2014.215

7. Politano, A., H. K. Yu, D. Farías, and G. Chiarello, "Multiple acoustic surface plasmons in graphene/Cu(111) contacts," Phys. Rev. B, Vol. 97, 035414, 2018.
doi:10.1103/PhysRevB.97.035414

8. Politano, A., I. Radović, D. Borka, Z. L. Mišković, H. K. Yude, D. Farías, and G. Chiarello, "Dispersion and damping of the interband π plasmon in graphene grown on Cu(111) foils," Carbon, Vol. 114, 70-76, 2017.
doi:10.1016/j.carbon.2016.11.073

9. Politano, A., I. Radović, D. Borka, Z. L. Mišković, and G. Chiarello, "Interband plasmons in supported graphene on metal substrates: Theory and experiments," Carbon, Vol. 96, 91-97, 2016.
doi:10.1016/j.carbon.2015.09.053

10. Politano, A., A. R. Marino, V. Formoso, D. Farías, R. Miranda, and G. Chiarello, "Quadratic dispersion and damping processes of π plasmon in monolayer graphene on Pt(111)," Plasmonics, Vol. 7, 369-376, 2012.
doi:10.1007/s11468-011-9317-1

11. Politano, A., A. R. Marino, V. Formoso, D. Farías, R. Miranda, and G. Chiarello, "Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111)," Phys. Rev. B, Vol. 84, 033401, 2011.
doi:10.1103/PhysRevB.84.033401

12. Cupolillo, A., A. Politano, N. Ligato, D. M. Cid Perez, G. Chiarello, and L. S. Caputi, "Substrate-dependent plasmonic properties of supported graphene," Surf. Sci., Vol. 634, 76, 2015.
doi:10.1016/j.susc.2014.11.002

13. Politano, A., G. Chiarello, and C. Spinella, "Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy," Mater. Sci. Semicond. Process., Vol. 65, 88-99, 2017.
doi:10.1016/j.mssp.2016.05.002

14. Ben Rhouma, M., M. Oueslati, and B. Guizal, "Surface plasmons on a doped graphene sheet with periodically modulated conductivity," Superlattices and Microstructures, Vol. 96, 212-219, 2016.
doi:10.1016/j.spmi.2016.05.021

15. Nikitin, A. Yu., F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, "Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons," Phys. Rev. B, Vol. 84, 161407, 2011.
doi:10.1103/PhysRevB.84.161407

16. Bludov, Y. V., N. M. R. Peres, and M. I. Vasilevskiy, "Graphene-based polaritonic crystal," Phys. Rev. B, Vol. 85, 081405, 2012.
doi:10.1103/PhysRevB.85.245409

17. Ferreira, A. and N. M. R. Peres, "Complete light absorption in graphene-metamaterial corrugated structures," Phys. Rev. B, Vol. 86, 205401, 2012.
doi:10.1103/PhysRevB.86.205401

18. Madani, A., S. Zhong, H. Tajalli, S. R. Entezar, A. Namdar, and Y. Ma, "Tunable metamaterials made of graphene-liquid crystal multilayers," Progress In Electromagnetics Research, Vol. 143, 545-558, 2013.
doi:10.2528/PIER13080302

19. Freitag, M., et al. "Photocurrent in graphene harnessed by tunable intrinsic plasmons," Nature Comm., Vol. 4, 1951, 2013.
doi:10.1038/ncomms2951

20. Gómez-Díaz, J. S., M. Esquius-Morote, and J. Perruisseau-Carrier, "Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips," Optics Express, Vol. 21, 24856-24872, 2013.
doi:10.1364/OE.21.024856

21. Malhat, H. A., S. H. Zainud-Deen, and S. M. Gaber, "Graphene based transmitarray for terahertz applications," Progress In Electromagnetics Research M, Vol. 36, 185-191, 2014.
doi:10.2528/PIERM14050705

22. Juneghani, F. A., A. Z. Nezhad, and R. Safian, "Analysis of diffraction graphene gratings using the C-method and design of a terahertz polarizer," Progress In Electromagnetics Research M, Vol. 65, 175-186, 2018.
doi:10.2528/PIERM17102901

23. Nitas, M., C. S. Antonopoulos, and T. V. Yioultsis, "EB eigenmode formulation for the analysis of lossy and evanescent modes in periodic structures and metamaterials," IEEE Trans. Magnetics, Vol. 53, 2017.
doi:10.1109/TMAG.2017.2683459

24. Monk, P., Finite Element Methods for Maxwell's Equations, Oxford University Press, 2003.
doi:10.1093/acprof:oso/9780198508885.001.0001

25. Boffi, D., F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, Springer, 2013.
doi:10.1007/978-3-642-36519-5

26. Zhu, Y. and A. C. Cangellaris (eds.), Multigrid Finite Element Methods for Electromagnetic Field Modeling, John Wiley & Sons, 2006.
doi:10.1002/0471786381

27. Salonikios, V., S. Amanatiadis, N. Kantartzis, and T. V. Yioultsis, "Modal analysis of graphene microtubes utilizing a two-dimensional vectorial finite element method," Applied Physics A, Vol. 122, 351, 2016.
doi:10.1007/s00339-016-9862-8

28. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, 064302, 2008.
doi:10.1063/1.2891452

29. Gonçalves, P. A. D., E. J. C. Dias, Y. V. Bludov, and N. M. R. Peres, "Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: An analytical approach," Phys. Rev. B, Vol. 94, 195421, 2016.
doi:10.1103/PhysRevB.94.195421

30. Politano, A. and G. Chiarello, "Emergence of a nonlinear plasmon in the electronic response of doped graphene," Carbon, Vol. 71, 176-80, 2014.
doi:10.1016/j.carbon.2014.01.026