Vol. 90
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-03-17
High Sensitivity Temperature Sensor Based on Photonic Crystal Resonant Cavity
By
Progress In Electromagnetics Research Letters, Vol. 90, 85-90, 2020
Abstract
In this paper we investigate a new design of high sensitivity photonic crystal temperature sensor (PCTS). A square lattice of silicon (Si) rods immersed in air matrix is used as a basic structure. The designed sensor consists of two inline quasi-waveguides which are coupled to a resonant cavity (RC). The sensing principle is based on Si refractive index change caused by the variation of the temperatures over a range from 0 to 80˚C. This variation leads to an important shift in the resonance wavelength. The performance of the suggested temperature sensor has been analyzed and studied using finite-difference time domain (FDTD) method. The results show that our designed structure offers a high sensibility of 93, 61 pm/˚C and quality factor of 2506.5. Its structure is very compact with total size 115.422 µm2, which is suitable for nanotechnology based sensing applications.
Citation
Faiza Bounaas, and Amel Labbani, "High Sensitivity Temperature Sensor Based on Photonic Crystal Resonant Cavity," Progress In Electromagnetics Research Letters, Vol. 90, 85-90, 2020.
doi:10.2528/PIERL20010204
References

1. Jouannopoulos, J., R. Meade, and J. Winn, Photonic Crystals, Molding the Flow of Light, Princeton, University Press, Princeton, NJ, 1995.

2. Jindal, S., S. Sobti, M. Kumar, S. Sharma, and M. K. Pal, "Nanocavity-coupled photonic crystal waveguide as highly sensitive platform for cancer detection," IEEE Sensors Journal, Vol. 16, No. 10, 3705-3710, 2016.
doi:10.1109/JSEN.2016.2536105

3. Pal, S., A. R. Yadav, M. A. Lifson, J. E. Baker, P. M. Fauchet, and B. L. Miller, "Selective virus detection in complex sample matrices with photonic crystal optical cavities," Biosensors and Bioelectronics, Vol. 44, 229-234, 2013.
doi:10.1016/j.bios.2013.01.004

4. Thenmozhi, H., M. Mani Rajan, V. Devika, D. Vigneswaran, and N. Ayyanar, "D-glucose sensor using photonic crystal fiber," Optik, Vol. 145, 489-494, 2017.
doi:10.1016/j.ijleo.2017.08.039

5. Hsiao, F. and C. Lee, "Computational study of photonic crystals nano-ring resonator for biochemical sensing," IEEE Sensors Journal, Vol. 10, No. 7, 1185-1191, 2010.
doi:10.1109/JSEN.2010.2040172

6. Kumar, A., T. S. Saini, and R. K. Sinha, "Design and analysis of photonic crystal biperiodic waveguide structure based optofluidic-gas senso ," Optik, Vol. 126, No. 24, 5172-5175, 2015.
doi:10.1016/j.ijleo.2015.09.157

7. Zhang, Y., Y. Zhao, and Q. Wang, "Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration," Sensors and Actuators B: Chemical, Vol. 184, 179-188, 2013.
doi:10.1016/j.snb.2013.04.082

8. Ammari, M., F. Hobar, and M. Bouchemat, "Photonic crystal microcavity as a highly sensitive platform for RI detection," Chinese Journal of Physics, Vol. 56, No. 4, 1415-1419, 2018.
doi:10.1016/j.cjph.2018.05.010

9. Wang, X., Q. Tan, C. Yang, N. Lu, and G. Jin, "Photonic crystal refractive index sensing based on sandwich structure," Optik, Vol. 123, No. 23, 2113-2115, 2012.
doi:10.1016/j.ijleo.2011.10.008

10. Arunkumar, R., T. Suganya, and S. Robinson, "Design and analysis of photonic crystal elliptical ring resonator based pressure sensor," Int. J. Photon. Opt. Technol., Vol. 3, No. 1, 30-33, 2017.

11. Olyaee, S. and A. A. Dehghani, "High resolution and wide dynamic range pressure sensor based on two-dimensional photonic crystal," Photonic Sensors, Vol. 2, No. 1, 92-96, 2012.
doi:10.1007/s13320-011-0044-1

12. Shanthi, K. V. and S. Robinson, "Two-dimensional photonic crystal based sensor for pressure sensing," Photonic Sensors, Vol. 4, No. 3, 248-253, 2014.
doi:10.1007/s13320-014-0198-8

13. Rajasekar, R. and S. Robinson, "Nano-pressure and temperature sensor based on hexagonal photonic crystal ring resonator," Plasmonics, Vol. 14, No. 1, 3-15, 2018.
doi:10.1007/s11468-018-0771-x

14. Hocini, A. and A. Harhouz, "Modeling and analysis of the temperature sensitivity in two-dimensional photonic crystal microcavity," Journal of Nanophotonics, Vol. 10, No. 1, 016007, 2016.
doi:10.1117/1.JNP.10.016007

15. Fu, H., H. Zhao, X. Qiao, Y. Li, D. Zhao, and Z. Yong, "Study on a novel photonic crystal temperature sensor," Optoelectronics Letters, Vol. 7, No. 6, 419-422, 2011.
doi:10.1007/s11801-011-0065-4

16. Mallika, C. S., I. Bahaddur, P. C. Srikanth, and P. Sharan, "Photonic crystal ring resonator structure for temperature measurement," Optik, Vol. 126, No. 20, 2252-2255, 2015.
doi:10.1016/j.ijleo.2015.05.123

17. Boruah, J., Y. Kalra, and R. K. Sinha, "Demonstration of temperature resilient properties of 2D silicon carbide photonic crystal structures and cavity modes," Optik, Vol. 125, No. 5, 1663-1666, 2014.
doi:10.1016/j.ijleo.2013.09.063

18. Chen, Y.-H., W.-H. Shi, L. Feng, X.-Y. Xu, and M.-Y. Shang-Guan, "Study on simultaneous sensing of gas concentration and temperature in one-dimensional photonic crystal," Superlattices and Microstructures, Vol. 131, 53-58, 2019.
doi:10.1016/j.spmi.2019.05.033