Vol. 90
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-20
Scattering and Coupling Reduction of Dipole Antenna Using Gradient Index Metamaterial Based Cloak
By
Progress In Electromagnetics Research M, Vol. 90, 185-193, 2020
Abstract
A gradient index metamaterial (GIM) based conformal cloak is utilized to reduce the overall scattering of a dipole antenna and its blockage effect when being placed in close proximity of a horn antenna. The reduction in scattering is attributed to wave conversion properties of GIM cover, by virtue of which the propagating waves get converted to surface waves and vice versa, thus reducing the scattering signature of the dipole. The GIM cover also has the advantage of larger bandwidth than single metasurface based cloaks (mantle cloak). The proposed GIM based cloak proves to be effective in reducing the mutual interference between dipole and horn antenna without disrupting the performance of individual antennas in their respective frequency band of interest. The Ansys HFSS simulation results are presented to demonstrate the effectiveness of GIM based cover to reduce mutual blockage effect between a low band dipole and an S-band horn antenna.
Citation
Mahesh Singh Bisht, and Kumar Vaibhav Srivastava, "Scattering and Coupling Reduction of Dipole Antenna Using Gradient Index Metamaterial Based Cloak," Progress In Electromagnetics Research M, Vol. 90, 185-193, 2020.
doi:10.2528/PIERM19123003
References

1. Vehmas, J., P. Alitalo, and S. A. Tretyakov, "Experimental demonstration of antenna blockage reduction with a transmission-line cloak," IET Microwaves, Antennas Propagation, Vol. 6, No. 7, 830-834, 2012.
doi:10.1049/iet-map.2011.0509

2. Alù, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, No. 1, 2005.
doi:10.1103/PhysRevE.72.016623

3. Alù, A., "Mantle cloak: Invisibility induced by a surface," Phys. Rev. B, Vol. 80, No. 24, 2009.
doi:10.1103/PhysRevB.80.245115

4. Chen, P. Y. and A. Alù, "Mantle cloaking using thin patterned metasurfaces," Phys. Rev. B, Vol. 80, No. 24, 2011.

5. Padooru, Y. R., A. B. Yakovlev, P. Y. Chen, and A. Alù, "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays," Journal of Applied Physics. B, Vol. 112, No. 3, 2012.

6. Alù, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, No. 23, 2009.
doi:10.1103/PhysRevLett.102.233901

7. Monti, A., J. Soric, A. Alù, F. Bilotti, A. Toscano, and L. Vegni, "Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1414-1417, 2012.
doi:10.1109/LAWP.2012.2229102

8. Soric, J. C., R. Fleury, A. Monti, A. Toscano, F. Bilotti, and A. Alù, "Controlling scattering and absorption with metamaterial covers," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4220-4229, 2014.
doi:10.1109/TAP.2014.2322891

9. Soric, J. C., A. Monti, A. Toscano, F. Bilotti, and A. Alù, "Dual-polarized reduction of dipole antenna blockage using mantle cloaks," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4827-4834, 2015.
doi:10.1109/TAP.2015.2476468

10. Bernety, H. M. and A. B. Yakovlev, "Cloaking of single and multiple elliptical cylinders and strips with confocal elliptical nanostructured graphene metasurface," Journal of Physics: Condensed Matter, Vol. 27, No. 18, 2015.
doi:10.1088/0953-8984/27/18/185304

11. Bernety, H. M. and A. B. Yakovlev, "Decoupling antennas in printed technology using elliptical metasurface cloaks," Journal of Applied Physics, Vol. 119, No. 1, 2016.
doi:10.1063/1.4939610

12. Monti, A., J. C. Soric, B. Mirko, R. Davide, V. Stefano, F. Trotta, A. Alù, A. Toscano, and F. Bilotti, "Mantle cloaking for co-site radio-frequency antennas," Applied Physics Letters, Vol. 108, No. 11, 2016.
doi:10.1063/1.4944042

13. Moreno, G., H. Bernety, and A. B. Yakovlev, "Wideband elliptical metasurface cloaks in antenna technology," 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 69-70, 2017.
doi:10.1109/APUSNCURSINRSM.2017.8072077

14. Moreno, G., A. B. Yakovlev, H. M. Bernety, D. H. Werner, H. Xin, A. Monti, F. Bilotti, and A. Alù, "Wideband elliptical metasurface cloaks in printed antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3512-3525, 2018.
doi:10.1109/TAP.2018.2829809

15. Monti, A., J. Soric, A. Alù, T. Alessandro, and B. Filiberto, "Design of cloaked Yagi-Uda antennas," EPJ Applied Metamaterials, Vol. 3, 2016.

16. Bisht, M. S. and K. V. Srivastava, "Design and analysis of gradient index metamaterial-based cloak with wide bandwidth and physically realizable material parameters," Applied Physics A, Vol. 124, No. 4, 2018.
doi:10.1007/s00339-018-1705-3

17. Shulin, S., H. Qiong, X. Shiyi, X. Qin, L. Xin, and Z. Lei, "Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves," Nature Materials, Vol. 11, 2012.

18. Xu, Y., C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, "Broadband asymmetric waveguiding of light without polarization limitations," Nature Communications, Vol. 4, 2013.

19. Gu, C., Y. Xu, S. Li, W. Lu, J. Li, H. Chen, and B. Hou, "A broadband polarization-insensitive cloak based on mode conversion," Scientific Reports, Vol. 5, 2015.

20. L3 Narda-ATM "Waveguide horn antenna-standard gain and wide band,", https://www.atmmicrowave.com/waveguide/horn-antenna-standard-gain-wide-band.

21. Saini, L., Y. Janu, M. K. Patra, R. K. Jani, G. K. Gupta, A. Dixit, and S. R. Vadera, "Dual band resonance in tetragonal BaTiO3/NBR composites for microwave absorption applications," J. Am. Ceram. Soc., Vol. 99, No. 9, 3002-3007, 2016.
doi:10.1111/jace.14284

22. Bele, A., M. Cazacu, G. Stiubianu, and S. Vlad, "Silicone-barium titanate composites with increased electromechanical sensitivity. The effects of the filler morphology," RSC Adv., Vol. 4, No. 102, 58522-58529, 2014.
doi:10.1039/C4RA09903F

23. Murugan, M., V. K. Kokate, M. S. Bapat, and A. M. Sapkal, "Synthesis of nanosized barium titanate/epoxy resin composites and measurement of microwave absorption," Bull. Mater. Sci., Vol. 33, No. 6, 657-662, Dec. 2010.
doi:10.1007/s12034-011-0143-z

24. Babar, A. A., V. A. Bhagavati, L. Ukkonen, A. Z. Elsherbeni, P. Kallio, and L. Sydanheimo, "Performance of high-permittivity ceramic-polymer composite as a substrate for UHF RFID tag antennas," Int. J. Antennas Propag., 2012.

25. Vural, M., B. Crowgey, L. C. Kempel, and P. Kofinas, "Nanostructured flexible magneto-dielectrics for radio frequency applications," J. Mater. Chem. C, Vol. 2, No. 4, 756-763, 2014.
doi:10.1039/C3TC32113D

26. Han, K., M. Swaminathan, R. Pulugurtha, H. Sharma, R. Tummala, S. Yang, and V. Nair, "Magneto-dielectric nanocomposite for antenna miniaturization and SAR reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 72-75, 2016.
doi:10.1109/LAWP.2015.2430284

27. Morales, C. A., "Magneto-dielectric polymer nanocomposite engineered substrate for RF and microwave antennas,", Ph.D. Dissertation, University of South Florida, 2011.

28. Yang, T. I., R. N. C. Brown, L. C. Kempel, and P. Kofinas, "Controlled synthesis of core-shell iron-silica nanoparticles and their magneto-dielectric properties in polymer composites," Nanotechnology, Vol. 22, No. 10, 2011.
doi:10.1088/0957-4484/22/10/105601