Vol. 90
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-13
Design of Adaptive Array with E-Shape Slot Radiator for Smart Antenna System
By
Progress In Electromagnetics Research M, Vol. 90, 137-146, 2020
Abstract
This paper presents the design of an 8-element linear array for Adaptive Antenna applications using the Least Mean Square (LMS) algorithm towards improving the directive gain, beam steering capabilities, half-power beamwidth, sidelobe level, and bandwidth of array. A conventional patch antenna is optimized to operate at 3.6 GHz (5G applications) with two symmetrical slots and Quarter Wave Transformer for feeding, and this design is extended up to 8 elements using CST Microwave Studio parameterization. The Return Loss (S11), Directivity, HPBW and VSWR of the antenna array are observed for the 2, 4, and 8 element adaptive array. The inter-element spacing for resulting eight-element antenna array geometry is optimized to obtain maximum directive gain. This geometry appears promising in improving the directive gain from 7.6 dBi to 15.1 dBi for a single element to eight elements respectively. Further, the LMS algorithm is used to compute the optimal complex weights, considering different angles for the desired User (+45˚ and -45˚) and Interferer (+20˚ and -20˚) during MATLAB simulation, and then these optimal weights are fed to antenna elements using CST for beam steering in a different direction. Maximas in the direction of user and nulls in the direction of interferer are obtained using CST software and found closely matching with MATLAB results.
Citation
Vidya P. Kodgirwar, Shankar B. Deosarkar, and Kalyani Joshi, "Design of Adaptive Array with E-Shape Slot Radiator for Smart Antenna System," Progress In Electromagnetics Research M, Vol. 90, 137-146, 2020.
doi:10.2528/PIERM19122901
References

1. Godhra, L. C., Smart Antennas, CRC Press, 2004.
doi:10.1201/9780203496770

2. Srar, J. A. S. and K.-S. Chung, "Adaptive array beam forming using combined RLS-LMS algorithm," Proceedings of APCC 2008 IEICE 08 SB 0083, 2008.

3. Godara, L. C., "Application of antenna arrays to mobile communications, part-II: Beam-forming and direction-of-arrival considerations," Proceedings of the IEEE, Vol. 85, No. 8, 1195-1245, August 1997.
doi:10.1109/5.622504

4. Haji, I. A., Md. Rafiqul Islam, A. H. M. Zahirul Alam, O. O. Khalifa, and S. Khan, "Design and optimization of linear array antenna based on the analysis of direction of arrival (DOA) estimation and beamforming algorithms," (ICCCE 2010), Kuala Lumpur, Malaysia, May 11-13, 2010.

5. Wang, H., Z. Zhang, and Z. Feng, "A Beam-switching antenna array with shaped radiation patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 818-821, 2012.
doi:10.1109/LAWP.2012.2206362

6. Amsavalli, A. and K. R. Kashwan, "Smart patch antenna array for uplink in 4G mobile communication based on LMS algorithm for DS-CDMA technique," Journal of Convergence Information Technology (JCIT), Vol. 9, No. 1, January 2014.

7. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, Hoboken, NJ, 2005, ISBN 047166782X (hbk).

8. Hossaini, S., M. T. Islam, and S. Serikawa, "Adaptive beam-forming algorithms for smart antenna systems," International Conference on Control, Automation and Systems 2008 in COEX, Seoul, Korea, October 14–17, 2008.

9. Dungriyal, K., S. Ananad, and D. Sriram Kumar, "Performance of MIR-LMS algorithm for beamforming in smart antenna," IJISET, Vol. 1, No. 5, July 2014.

10. Navia-Vzquez, A., M. M. Beamforming, L. E. Garca-Muoz, and C. G. Christodoulou, "Approximate Kernel orthogonalization for antenna array processing," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 3942-3950, December 2010.
doi:10.1109/TAP.2010.2078458

11. Navia-Vzquez, A., M. Martnez-Ramn, L. E. Garca-Muoz, and C. G. Christodoulou, "Adaptive approximate Kernel orthogonalization for antenna array processing," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4091-4100, August 2013.
doi:10.1109/TAP.2013.2263276

12. A white paper on ``Enabling 5G in India,'', February 22, 2019.

13. Zainarry, S. N. M., N. Nguyen-Trong, and C. Fumeaux, "A frequency- and pattern-reconfigurable two-element array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 617-620, April 2018.
doi:10.1109/LAWP.2018.2806355

14. Gan, Z., Z.-H. Tu, and Z.-M. Xie, "Pattern-reconfigurable unidirectional dipole antenna array fed by SIW coupler for millimeter-wave application," IEEE Access, Vol. 6, 22401-22407, 2018.
doi:10.1109/ACCESS.2018.2810194

15. Chang, L., H.-Y. Yang, H. N. Chu, and T.-G. Ma, "Two-element retro-directive/beam-switching array using dual-mode coupler," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2240-2243, 2017.
doi:10.1109/LAWP.2017.2710086

16. Chou, H.-T. and C.-T. Yu, "Design of phased array antennas with beam switching capability in the near-field focus applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 11, 1120-1127, The Institution of Engineering and Technology, 2015, ISSN 1751-8725.
doi:10.1049/iet-map.2015.0034

17. Radaydeh, R. M. and M.-S. Alouini, "Comparisons of receive array interference reduction techniques under erroneous generalized transmit beamforming," IEEE Transactions on Communications, Vol. 62, No. 2, 600-615, February 2014.
doi:10.1109/TCOMM.2013.122813.130275