Vol. 90
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-02-19
A High Gain Dual Band Rectenna for RF Energy Harvesting Applications
By
Progress In Electromagnetics Research Letters, Vol. 90, 29-36, 2020
Abstract
In this article, a high gain dual band rectenna is proposed for energy harvesting applications. A dual band antenna is designed and optimized to operate at 3.5 GHz and 5.8 GHz frequency bands. The antenna is based on a multilayer substrate structure excited by aperture-coupling feed. In order to achieve a maximum gain of the antenna in both bands, a rectangular cell optimized by genetic algorithms is etched on the radiating element (patch). This antenna was simulated and fabricated, and the results show a good agreement in both bands (3.5 and 5.8 GHz) with a high gain of 10.2 dBi and 8.92 dBi for the first and second bands, respectively. A dual-band rectifier is also designed and studied to harvest the radio frequency energy absorbed by the antenna to DC energy at these frequency bands (3.5 GHz and 5.8 GHz). This rectifier shows a good performance in terms of conversion efficiency which achieves 44% in the first band and 29% in the second band. As a result, an output voltage of 656.88 mV for a low input power of 0 dBm is observed when the rectifier operates at both bands.
Citation
Mohammed Cherif Derbal, and Mourad Nedil, "A High Gain Dual Band Rectenna for RF Energy Harvesting Applications," Progress In Electromagnetics Research Letters, Vol. 90, 29-36, 2020.
doi:10.2528/PIERL19122604
References

1. Kuhn, V., C. Lahuec, F. Seguin, and C. Person, "A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%," IEEE Trans. Microwave Theory Techniques, Vol. 63, No. 5, 1768-1778, 2015.
doi:10.1109/TMTT.2015.2416233

2. Palazzi, V., et al. "A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands," IEEE Trans. Microwave Theory Techniques, Vol. 66, No. 1, 366-379, 2017.
doi:10.1109/TMTT.2017.2721399

3. Shen, S., C. Y. Chiu, and R. D. Murch, "A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3071-3074, 2017.
doi:10.1109/LAWP.2017.2761397

4. Shi, Y., J. Jing, Y. Fan, L. Yang, and M. Wang, "Design of a novel compact and efficient rectenna for WiFi energy harvesting," Progress In Electromagnetics Research C, Vol. 83, 57-70, 2018.
doi:10.2528/PIERC18012803

5. Arrawatia, M., M. S. Baghini, and G. Kumar, "Differential microstrip antenna for RF energy harvestin," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1581-1588, 2015.
doi:10.1109/TAP.2015.2399939

6. Derbal, M. C. and M. Nedil, "A high gain rectenna for energy harvesting applications," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1505-1506, Atlanta, GA, USA, 2019.

7. Aboualalaa, M., A. B. Abdel-Rahman, A. Allam, H. Elsadek, and R. K. Pokharel, "Design of a dual-band microstrip antenna with enhanced gain for energy harvesting applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1622-1626, 2017.
doi:10.1109/LAWP.2017.2654353

8. Niotaki, K., S. Kim, S. Jeong, A. Collado, A. Georgiadis, and M. M. Tentzeris, "A compact dual-band rectenna using slot-loaded dual band folded dipole antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1634-1637, 2013.
doi:10.1109/LAWP.2013.2294200

9. Mattsson, M., C. I. Kolitsidas, and B. L. G. Jonsson, "Dual-band dual-polarized full-wave rectenna based on differential field sampling," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 956-959, 2018.
doi:10.1109/LAWP.2018.2825783

10. Wang, M., Y. Fan, L. Yang, Y. Li, J. Feng, and Y. Shi, "Compact dual-band rectenna for RF energy harvest based on a tree-like antenna," IET Microwaves, Antennas & Propagation, Vol. 13, No. 9, 1350-1357, 2019.
doi:10.1049/iet-map.2018.5704

11. Xie, F., G.-M. Yang, and W. Geyi, "Optimal design of an antenna array for energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 155-158, 2013.
doi:10.1109/LAWP.2013.2243697

12. Kumar, H., M. Arrawatia, and G. Kumar, "Broadband planar log-periodic dipole array antenna based RF-energy harvesting system," IETE Journal of Research, Vol. 65, No. 1, 39-43, 2019.
doi:10.1080/03772063.2017.1385427

13. Derbal, M. C., A. Zeghdoud, and M. Nedil, "A novel dual band antenna design forWiFi applications using genetic algorithms," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1009-1010, Boston, 2018.

14. Mohd Noor, F. S., Z. Zakaria, H. Lago, and M. A.Meor Said, "Dual-band aperture-coupled rectenna for radio frequency energy harvesting," International Journal of RF and Microwave Computer Aided Engineering, Vol. 29, No. 1, e21651, 2019.
doi:10.1002/mmce.21651

15. Lu, P., X. S. Yang, J. L. Li, and B. Z. Wang, "A dual-frequency quasipifa rectenna with a robust voltage doubler for 2.45- and 5.8-GHz wireless power transmission," Microwave and Optical Technology Letters, Vol. 57, No. 2, 319-322, 2015.
doi:10.1002/mop.28841