Vol. 90
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-03-17
Composite Dual Transmission Lines and Its Application to Miniaturization of Gysel Power Divider
By
Progress In Electromagnetics Research Letters, Vol. 90, 91-97, 2020
Abstract
This letter presents novel composite dual-transmission lines. The proposed line consists of one direct series line and two identical transmission lines connected by a series lumped capacitor. The line is analyzed with an even-odd mode analysis method to have simple closed-form design equations. From the design equations, it is also observed that one can maintain a more realizable value of the impedance of the lines and achieve a good amount of miniaturization by adjusting only the lumped capacitor. To verify this technique, a 74.6% miniaturized Gysel power divider (GPD) is designed at 0.95 GHz compared to reference GPD. The physical size of the proposed GPD is 60 mm × 32 mm (equivalently 0.25λg × 0.13λg, λg is guided wavelength line). Moreover, two transmission zeros (TZs) are obtained near passband which improved the out-of-band performance.
Citation
Mukesh Kumar, Gobinda Sen, Sk. Nurul Islam, Susanta Kumar Parui, and Santanu Das, "Composite Dual Transmission Lines and Its Application to Miniaturization of Gysel Power Divider," Progress In Electromagnetics Research Letters, Vol. 90, 91-97, 2020.
doi:10.2528/PIERL19122603
References

1. Wilkinson, E. J., "An N-way hybrid power divider," IRE Trans. Microw. Theory Tech., Vol. 8, 116-118, 1960.
doi:10.1109/TMTT.1960.1124668

2. Chen, C. F., T. Y. Huang, T. M. Shen, et al. "Design of miniaturized filtering power dividers for system-in-a-package," IEEE Trans. Compon., Packag., Manufact., Tech., Vol. 3, No. 10, 1663-1672, 2013.
doi:10.1109/TCPMT.2013.2254488

3. Hong, J. S., Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
doi:10.1002/0471221619

4. Gysel, U. H., "A new N-way power divider/combiner suitable for high power applications," IEEE MTT-S Int. Dig., 116-118, 1975.

5. Tang, C. W., M. G. Chen, and C. H. Tsai, "Miniaturization of microstrip branch-line coupler with dual transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 3, 185-187, 2008.
doi:10.1109/LMWC.2008.916798

6. Velidi, V. K., D. Pandey, and S. Sanyal, "Microstrip rat-race couplers with pre-determined miniaturization and harmonic suppression," Microwave Optical Technology Letters, Vol. 52, 30-34, 2010.
doi:10.1002/mop.24832

7. Phani Kumar, K. V., R. K. Barik, and S. S. Karthikeyan, "A novel two section branch line coupler employing different transmission line techniques," Int. J. Electron. Commun. (AEÜ), Vol. 70, 738-742, 2016.
doi:10.1016/j.aeue.2016.02.011

8. Zhang, H. L., B. J. Hu, and X. Y. Zhang, "Compact equal and unequal dual-frequency power dividers based on composite right-/left handed transmission lines," IEEE Trans. Indus. Ele., Vol. 59, No. 9, 3464-3472, 2012.
doi:10.1109/TIE.2011.2171178

9. Karimia, G., H. Siahkamaria, and F. Khamin-Hamedani, "A novel miniaturized Gysel power divider using low-pass filter with harmonic suppression," Int. J. Electron. Commun. (AEÜ), Vol. 69, 856-860, 2015.
doi:10.1016/j.aeue.2015.02.004

10. Oraizi, H. and A. Sharifi, "Optimum design of a wideband two-way gysel power divider with input-output impedance matching," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2238-2248, 2009.
doi:10.1109/TMTT.2009.2027204

11. Shahi, H. and H. Shamsi, "Compact wideband Gysel power dividers with harmonic suppression and arbitrary power division ratios," Int. J. Electron. Commun. (AEÜ), Vol. 79, 16-25, 2017.
doi:10.1016/j.aeue.2017.05.024

12. Zaker, R., A. Abdipour, and R. Mirzavand, "Closed-form design of Gysel power divider with only one isolation resistor ," IEEE Microwave Wirel. Compon. Lett. Aug., Vol. 24, No. 8, 527-529, 2014.
doi:10.1109/LMWC.2014.2323554

13. Lin, F., Q. X. Chu, Z. Gong, and Z. Lin, "Compact broadband Gysel power divider with arbitrary power-dividing ratio using microstrip/slotline phase inverter," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 5, 1226-1234, 2012.
doi:10.1109/TMTT.2012.2187067

14. Guan, J., L. J. Zhang, Z. Y. Sun, Y. Q. Leng, and Y. T. Peng, "Designing power divider by combining Wilkinson and Gysel structure," Electron. Lett., Vol. 48, No. 13, 769-770, 2012.
doi:10.1049/el.2012.0753

15. Wu, Y., Z. Zhuang, G. Yan, Y. Liu, and Z. Ghassemlooy, "Generalized dual-band unequal filtering power divider with independently controllable bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 10, 3838-3848, Oct. 2017.
doi:10.1109/TMTT.2017.2691780

16. Liu, F., Y. Wang, S. Zhang, and J. Lee, "Design of compact tri-band Gysel power divider with zero-degree composite right-/left-hand transmission lines," IEEE Access, Vol. 7, 34964-34972, 2019.
doi:10.1109/ACCESS.2019.2904307

17. Wu, Y., Z. Zhuang, M. Kong, L. Jiao, Y. Liu, and A. A. Kishk, "Wideband filtering unbalanced-to-balanced independent impedance-transforming power divider with arbitrary power ratio," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 10, 4482-4496, Oct. 2018.
doi:10.1109/TMTT.2018.2856259

18. Jiao, L., Y. Wu, Z. Zhuang, Y. Liu, and A. A. Kishk, "Planar balanced-to-unbalanced in-phase power divider with wideband filtering response and ultra-wideband common-mode rejection," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 6, 1875-1886, Jun. 2018.
doi:10.1109/TCSI.2017.2766366

19. Wang, K., X. Y. Zhang, and B. Hu, "Corrections to ``Gysel power divider with arbitrary power ratios and filtering responses using coupling structure" [Mar. 14 431–440]," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 2, 1144-1144, Feb. 2018.
doi:10.1109/TMTT.2017.2777971

20. Wu, H., Y. Wu, Q. Yang, W. Wang, and A. A. Kishk, "Generalized high-isolation n-way Gysel power divider with arbitrary power ratio and different real terminated impedances," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, e22016, 2020.