Vol. 90
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-06
Solving Electric Current Volume Integral Equation with Nonconformal Discretization and Sherman-Morrison-Woodbury Formula-Based Algorithm
By
Progress In Electromagnetics Research M, Vol. 90, 109-116, 2020
Abstract
A fast direct solution of the electric current volume integral equation (JVIE) with the Sherman-Morrison-Woodbury (SMW) formula-based algorithm is presented to analyze electromagnetic scattering from inhomogeneous dielectric objects. The JVIE is discretized with the nonconformal face-based Schaubert-Wilton-Glisson (SWG) basis functions. Compared with conformal discretization that is advantageous to discrete homogeneous regions, the nonconformal discretization provides a more flexible and efficient scheme to separately handle the inhomogeneous subdomains depending on local parameters. Moreover, to take full use of both discretization methods, the mixture discretization is adopted. With the increase of object size, the impedance matrix equation arising from the JVIE becomes too large to solve and store for direct solution. In this paper, the SMW formula-based algorithm is adopted, leading to remarkable reduction on the computational complexity and memory requirement in contrast with conventional direct solution. This algorithm compresses the impedance matrix into a product of block diagonal submatrices, which can be inversed rapidly in direct way. Numerical results are given to demonstrate the efficiency and accuracy of the proposed method.
Citation
Fei Huang, and Yufa Sun, "Solving Electric Current Volume Integral Equation with Nonconformal Discretization and Sherman-Morrison-Woodbury Formula-Based Algorithm," Progress In Electromagnetics Research M, Vol. 90, 109-116, 2020.
doi:10.2528/PIERM19121704
References

1. Schaubert, D. H. and P. M. Meaney, "Efficient computation of scattering by inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 4, 587-592, 1986.
doi:10.1109/TAP.1986.1143855

2. Peng, Z., K.-H. Lee, and J.-F. Lee, "A discontinuous Galerkin surface integral equation method for electromagnetic wave scattering from nonpenetrable targets," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3617-3628, 2013.
doi:10.1109/TAP.2013.2258394

3. Cai, Q.-M., et al. "Nonconformal discretization of electric current volume integral equation with higher order hierarchical vector basis functions," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4155-4169, 2017.
doi:10.1109/TAP.2017.2710211

4. Nair, N. and B. Shanker, "Generalized method of moments: A novel discretization technique for integral equation," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2280-2293, 2011.
doi:10.1109/TAP.2011.2143652

5. Botha, M. M., "Solving the volume integral equations of electromagnetic scattering," J. Comput. Phys., Vol. 218, No. 1, 141-158, 2006.
doi:10.1016/j.jcp.2006.02.004

6. Markkanen, J., C.-C. Lu, X. Cao, and P. Ylä-oijala, "Analysis of volume integral equation formulations for scattering by high-contrast penetrable objects," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2367-2374, 2012.
doi:10.1109/TAP.2012.2189704

7. Zhang, L.-M. and X.-Q. Sheng, "A discontinuous Galerkin volume integral equation method for scattering from inhomogeneous objects," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5661-5667, 2015.
doi:10.1109/TAP.2015.2490254

8. Heldring, A., J. M. Rius, J. M. Tamayo, J. Parrón, and E. Ubeda, "Fast direct solution of method of moments linear system," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 3220-3228, 2007.
doi:10.1109/TAP.2007.908804

9. Heldring, A., J. M. Rius, J. M. Tamayo, J. Parrón, and E. Ubeda, "Multiscale compressed block decomposition for fast direct solution of method of moments linear system," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 526-536, 2011.
doi:10.1109/TAP.2010.2096385

10. Chen, X.-L., C.-Q. Gu, Z. Li, and Z. Niu, "Accelerated direct solution of electromagnetic scattering via characteristic basis function method with Sherman-Morrison-Woodbury formula-based algorithm," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4482-4486, 2016.
doi:10.1109/TAP.2016.2587743

11. Fang, X.-X., Q.-S. Cao, Y. Zhou, and Y. Wang, "Multiscale compressed and spliced Sherman-Morrison-Woodbury algorithm with characteristic basis function method," IEEE Trans. Electromagn. Compat., Vol. 60, No. 3, 716-724, 2018.
doi:10.1109/TEMC.2017.2738037

12. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propag., Vol. 32, No. 1, 77-85, 1984.
doi:10.1109/TAP.1984.1143193

13. Zhang, L.-M. and X.-Q. Sheng, "Discontinuous Galerkin volume integral equation solution of scattering from inhomogeneous dielectric objects by using the SWG basis function," IEEE Trans. Antennas Propag., Vol. 65, No. 3, 1500-1504, 2017.
doi:10.1109/TAP.2016.2647686