Vol. 90
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-03-05
FDA Transmit Beamforming Synthesis Using Chebyshev Window Function Technique to Counteract Deceptive Electronic Countermeasures Signals
By
Progress In Electromagnetics Research Letters, Vol. 90, 53-60, 2020
Abstract
Frequency diverse array (FDA) has gained remarkable attention in both radar and communication applications over the years due to its unique range-dependent beamforming. On the other hand, extremely less attention is paid to the exploitation of FDA in electronic countermeasures (ECM). Hence, this paper proposes a symmetric frequency diverse array via Chebyshev window function in ECM applications. Specifically, we utilize Chebyshev window function to design the coefficient of both transmit weights and frequency diverse increments to uncouple range-angle response of the true target to counteract deceptive ECM signals. In addition, we consider real constraint scenario, i.e., the propagation of the electromagnetic signal arriving at the true target position, which has been usually neglected in the FDA literature. The attribute of the proposed scheme is that it is able to discriminate between true target location and false target(s) location. This implies that the generated false target(s) by the jammer can be significantly suppressed in either angular or range profiles mismatch. Further, we adopt Swerling 1 model to devise generalized Neyman-Pearson design rule to evaluate the probability of detection of the proposed scheme. Numerical results illustrate the achievements of the proposed scheme.
Citation
Shaddrack Yaw Nusenu, Abdul Basit, and Emmanuel Asare, "FDA Transmit Beamforming Synthesis Using Chebyshev Window Function Technique to Counteract Deceptive Electronic Countermeasures Signals," Progress In Electromagnetics Research Letters, Vol. 90, 53-60, 2020.
doi:10.2528/PIERL19121005
References

1. Wong, K. T., Y. I. Wu, Y. S. Hsu, and Y. Song, "A lower bound of DOA estimates by an array randomly subject to sensor-breakdown," IEEE Sensors Journal, Vol. 12, No. 5, 911-913, May 2012.
doi:10.1109/JSEN.2011.2165704

2. Giannoccaro, N. I. and L. Spedicato, "A new strategy for spatial reconstruction of orthogonal planes using a rotating array of ultrasonic sensors," IEEE Sensors Journal, Vol. 12, No. 5, 1307-1316, May 2012.
doi:10.1109/JSEN.2011.2170062

3. Yong, S. and J. T. Bernhard, "A pattern reconfigurable null scanning antenna," IEEE Transactions Antennas Propagation, Vol. 60, No. 10, 4538-4544, Oct. 2012.
doi:10.1109/TAP.2012.2207336

4. Ahmed, A., W. Q.Wang, Z. Yuan, et al. "Subarray-based FDA radar to counteract deceptive ECM signals," EURASIP Journal on Advances in Signal Processing, 1-11, 2016, DOI 10.1186/s13634-016-0403-6.

5. Wang, W. Q., "Mitigating range ambiguities in high PRF SAR with OFDM waveform diversity," IEEE Geoscience Remote Sensing Letters, Vol. 10, No. 1, 101-105, Jan. 2013.
doi:10.1109/LGRS.2012.2193870

6. Poisel, R. A., Information Warfare and Electronic Warfare Systems, Artech House, Norwood, MA, USA, 2013.

7. Liu, N. J. and Y. T. Zhang, "A survey of radar ECM and ECCM," IEEE Transactions Aerospace Electron Systems, Vol. 31, No. 3, 1110-1120, Jul. 1995.

8. Farina, A., "Electronic counter-countermeasures," Radar Handbook, 3rd edition, M. Skolnik (ed.), McGraw-Hill, New York, NY, USA, 2008.

9. Roome, S. J., "Digital radio frequency memory," Electronics and Communication Engineering Journal, Vol. 2, No. 4, 147-153, Aug. 1990.
doi:10.1049/ecej:19900035

10. Berger, S. D., "Digital radio frequency memory linear range gate stealer spectrum," IEEE Transactions Aerospace Electron Systems, Vol. 39, No. 2, 725-735, Apr. 2003.
doi:10.1109/TAES.2003.1207279

11. Akhtar, J., "Orthogonal block coded ECCM schemes against repeat radar jammers," IEEE Transactions Aerospace Electron Systems, Vol. 45, No. 3, 1218-1226, 2009.
doi:10.1109/TAES.2009.5259195

12. Zhang, J., D. Zhu, and G. Zhang, "New antivelocity deception jamming technique using pulses with adaptive initial phases," IEEE Transactions Aerospace Electron Systems, Vol. 49, No. 2, 1290-1300, 2013.
doi:10.1109/TAES.2013.6494414

12. Zhang, J., D. Zhu, and G. Zhang, "New antivelocity deception jamming technique using pulses with adaptive initial phases," IEEE Transactions Aerospace Electron Systems, Vol. 49, No. 2, 1290-1300, 2013.
doi:10.1109/TAES.2013.6494414

13. Rao, B., S. Xiao, X. Wang, and T. Wang, "Maximum likelihood approach to the estimation and discrimination of exoatmospheric active phantom tracks using motion features," IEEE Transactions Aerospace Electron Systems, Vol. 48, No. 1, 794-819, 2012.
doi:10.1109/TAES.2012.6129671

14. Coluccia, A. and G. Ricci, "ABORT-Like detection strategies to combat possible deceptive ECM signals in a network of radars," IEEE Transactions Signal Processing, Vol. 63, No. 11, 290-2914, 2015.
doi:10.1109/TSP.2015.2415754

15. Bandiera, F., A. Farina, D. Orlando, and G. Ricci, "Detection algorithms to discriminate between radar targets and ECM signals," IEEE Transactions Signal Processing, Vol. 58, No. 12, 5489-5993, 2010.
doi:10.1109/TSP.2010.2077283

16. Greco, M., F. Gini, and A. Farina, "Radar detection and classification of jamming signals belonging to a cone class," IEEE Transactions Signal Processing, Vol. 56, No. 5, 1984-1993, 2008.
doi:10.1109/TSP.2007.909326

17. Xu, J., G. Liao, S. Zhu, and H. C. So, "Deceptive jamming suppression with frequency diverse MIMO radar," Signal Processing, Vol. 113, 9-17, 2015.
doi:10.1016/j.sigpro.2015.01.014

18. Gang, L., H. Huang, and W. Q. Wang, "Frequency diverse array radar in counteracting mainlobe jamming signals," 2017 IEEE Radar Conference (RadarConf), 1228-1232, 2017.

19. Nusenu, S. Y., Z. Wang, and W. Q. Wang, "FDA radar using Costas sequence modulated frequency increments," 2016 CIE International Conference on Radar, 1-4, Oct. 10-13, 2016, DOI:10.1109/RADAR.2016.8059332.

20. Nusenu, S. Y., W. Q. Wang, and A. Basit, "Time-modulated FD-MIMO array for integrated radar and communication systems ," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1015-1019, Jun. 2018.
doi:10.1109/LAWP.2018.2829729

21. Nusenu, S. Y. and W.-Q. Wang, "Dual-function FDA MIMO radar-communications system employing costas signal waveforms," 2018 IEEE Radar Conference (RadarConf), 0033-0038, 2018.
doi:10.1109/RADAR.2018.8378526

22. Nusenu, S. Y., H. Shao, P. Ye, et al. "Dual-function radar-communications system design via sidelobe manipulation based on FDA Butler matrix," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 452-456, Mar. 2019.
doi:10.1109/LAWP.2019.2894015

23. Nusenu, S. Y. and A. Basit, "Cognitive transmit subarray FDA design for integrated radar-communication using flexible sidelobe control," 2018 IEEE 7th International Conference on Adaptive Science and Technology (ICAST), 1-6, 2018.

24. Nusenu, S. Y., W.-Q. Wang, and J. Xiong, "Time-modulated frequency diverse array for physical-layer security," IET Microwaves, Antennas and Propagation, Vol. 15, No. 3, 336-345, Apr. 2017.

25. Nusenu, S. Y., W. Q. Wang, and S. Ji, "Secure directional modulation using frequency diverse array antenna," IEEE Radar Conference (RadarConf), 378-382, Seattle, WA, May 2017.

26. Nusenu, S. Y., H. Chen, W.-Q. Wang, S. Ji, and O. A. K. Opuni-Boachie, "Frequency diverse array using Butler matrix for secure wireless communications," Progress In Electromagnetics Research M, Vol. M, 207-215, 2018.
doi:10.2528/PIERM17101305

27. Nusenu, S. Y. and W. Q. Wang, "Range-dependent spatial modulation using frequency diverse array for OFDM wireless communications," IEEE Transactions Vehicular Technology, Vol. 67, No. 11, 10886-10895, 2018.
doi:10.1109/TVT.2018.2870045

28. Nusenu, S. Y. and A. Basit, "Frequency diverse array antennas: From their origin to their application in wireless communication systems," Journal of Computer Networks and Communications, 1-12, Article ID 5815678, 2018, https://doi.org/10.1155/2018/5815678.

29. Nusenu, S. Y., "Development of frequency modulated array antennas for millimeter–wave communications," Wireless Communications and Mobile Computing, Vol. 2019, 1-15, Article ID 6940708, 2019, doi.org/10.1155/2019/6940708.

30. Chen, K., S. Yang, Y. Chen, and S.-W. Qu, "Accurate models of time invariant beampatterns for frequency diverse array," IEEE Transactions on Antennas and Propagation, 1-1, 2019, DOI: 10.1109/TAP.2019.2896712.

31. Chen, B., X. Chen, Y. Huang, and J. Guan, "Transmit beampattern synthesis for FDA radar," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 98-101, Jan. 2018.
doi:10.1109/LAWP.2017.2776957

32. Dolph, C. L., "A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level," Proceedings of the IRE, Vol. 34, 335-348, 1946.
doi:10.1109/JRPROC.1946.225956

33. Van, H. L. T., Optimum Array Processing, Wiley, New York, 2002.

34. Wang, W. Q. and H. C. So, "Range-angle localization of targets by a double-pulse frequency diverse array radar," IEEE Journal Selected Topics Signal Processing, Vol. 8, No. 1, 106-114, 2014.
doi:10.1109/JSTSP.2013.2285528

35. Khan, W., I. M. Qureshi, and S. Saeed, "Frequency diverse array radar with logarithmically increasing frequency offset," IEEE Antennas Wireless Propagation Letters, Vol. 14, 499-502, 2015.
doi:10.1109/LAWP.2014.2368977