Vol. 90
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-03-09
Towards Embedded Radcom-Sensors in Wind Turbine Blades: Preliminary Numerical and Experimental Studies
By
Progress In Electromagnetics Research Letters, Vol. 90, 61-67, 2020
Abstract
This paper presents a numerical study on the application of radar and communication (RadCom) sensor nodes operating in the frequency band from 57-64 GHz. The sensor nodes are embedded in the laminate of wind turbine blades, enable a quality inspection directly after rotor blade manufacturing as well as a structural health monitoring (SHM) throughout the service life of the blade. Given by a lack of dielectric properties for typical rotor blade materials, we have performed experimental studies on material characterization including glass fibre composites, balsa wood, infusion glue, etc. This material database serves as input for wave propagation simulations in a full scale 3D rotor blade model. The analysis also includes a parametric study on path losses as well as an optimal sensor placement strategy.
Citation
Jonas Simon, Jochen Moll, Viktor Krozer, Thomas Kurin, Fabian Lurz, Robert Weigel, Stefan Krause, Oliver Bagemiel, Andreas Nuber, and Vadim Issakov, "Towards Embedded Radcom-Sensors in Wind Turbine Blades: Preliminary Numerical and Experimental Studies," Progress In Electromagnetics Research Letters, Vol. 90, 61-67, 2020.
doi:10.2528/PIERL19121004
References

1. Li, Z., A. Haigh, C. Soutis, A. Gibson, and P. Wang, "A review of microwave testing of glass fibre-reinforced polymer composites," Nondestructive Testing and Evaluation, 1-30, April 2019.

2. Moll, J., J. Simon, M. M¨alzer, V. Krozer, D. Pozdniakov, R. Salman, M. D¨urr, M. Feulner, A. Nuber, and H. Friedmann, "Radar imaging system for in-service wind turbine blades inspections: Initial results from a field installation at a 2 MW wind turbine," Progress in Electromagnetic Research, Vol. 162, 51-60, 2018.
doi:10.2528/PIER18021905

3. Moll, J., P. Arnold, M. M¨alzer, V. Krozer, D. Pozdniakov, R. Salman, S. Rediske, M. Scholz, H. Friedmann, and A. Nuber, "Radar-based structural health monitoring of wind turbine blades: The case of damage detection," Structural Health Monitoring, Vol. 17, No. 4, 815-822, July 2018.
doi:10.1177/1475921717721447

4. Ochieng, F. X., C. M. Hancock, G. W. Roberts, and J. Le Kernec, "A review of ground-based radar as a noncontact sensor for structural health monitoring of in-field wind turbines blades," Wind Energy, July 2018.

5. Moll, J., "Damage detection and localization in metallic structures based on jointed electromagnetic waveguides: A proof-of-principle study," Journal of Nondestructive Evaluation, Vol. 37, No. 4, December 2018.
doi:10.1007/s10921-018-0524-y

6. Moll, J., "Numerical and experimental analysis of defect detection in jointed electromagnetic waveguides," 13th European Conference on Antennas and Propagation, 1-4, 2019.

7. Worden, K., C. R. Farrar, G. Manson, and G. Park, "The fundamental axioms of structural health monitoring," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 463, No. 2082, 1639-1664, June 2007.
doi:10.1098/rspa.2007.1834

8. Wiesbeck, W. and L. Sit, "Radar 2020: The future of radar system," 2014 International Radar Conference (Radar), 1-6, October 2014.

9. Ciuonzo, D., A. De Maio, G. Foglia, and M. Piezzo, "Intrapulse radarembedded communications via multiobjective optimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 4, 2960-2974, October 2015.
doi:10.1109/TAES.2015.140821

10. Ciuonzo, D., A. De Maio, G. Foglia, and M. Piezzo, "Pareto-theory for enabling covert intrapulse radar-embedded communications," 2015 IEEE Radar Conference (RadarCon), 0292-0297, Arlington, VA, USA, May 2015.

11. Brancaccio, A., G. D’Alterio, E. De Stefano, L. Di Guida, M. Feo, and S. Luce, "A free-space method for microwave characterization of materials in aerospace application," 2014 IEEE Metrology for Aerospace (MetroAeroSpace), 423-427, May 2014.
doi:10.1109/MetroAeroSpace.2014.6865962

12. Arslanagic, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, April 2013.
doi:10.1109/MAP.2013.6529320

13. Lau, I., M. Frank, K. Shi, F. Lurz, A. Talai, R. Weigel, and A. Koelpin, "An accurate free space method for material characterization in w- band using material samples with two different thicknesses," 2018 48th European Microwave Conference (EuMC), 202-205, September 2018.
doi:10.23919/EuMC.2018.8541437

14. Moll, J., T. N. Kelly, D. Byrne, M. Sarafianou, V. Krozer, and I. Craddock, "Microwave radar imaging of heterogeneous breast tissue integrating A-priori information," International Journal of Biomedical Imaging, Article ID 943549, 10, 2014.